

Solving Interoperability and Performance Challenges over heterogeneous IoT Networks – DNS-based solutions

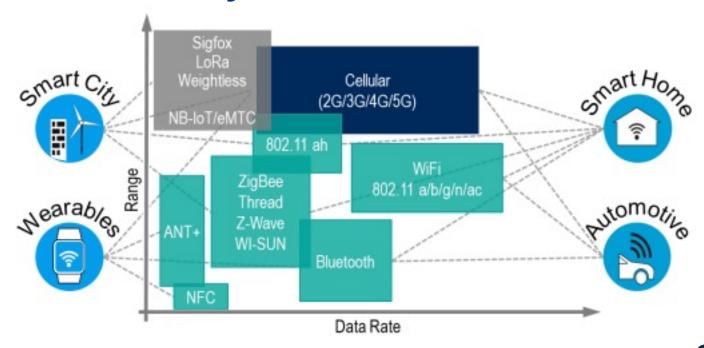
Antoine BERNARD November 26th, 2021

Thesis available at https://thesis.a-bernard.eu/

Summary

- Introduction
- Interoperability and device mobility
 - **Building a Roaming Federation**
 - Prefetching DNS information
- Performance challenges
 - **Compressing Headers**
 - Minimize network traffic
- Conclusion

Introduction


Solving Interoperability and Performance Challenges over heterogeneous IoT Networks – DNS-based solutions

30/08/2023

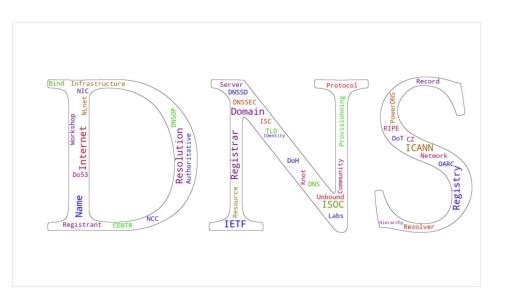
IoT diversity

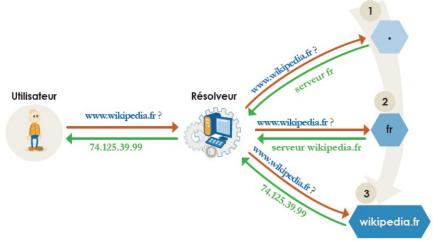
LoRaWAN, a Low-Power Wide-Area Network

Constraint network

- Low data rate
- High latency
- Small packet size

- Duty cycle limitations
- Long range
- Star topology





DNS

Recent evolutions

loT

- Standardization and interoperability are key concerns [1]
- Connect IoT to the Internet [2]
- Adding intelligence to the network [3]

Source:

[1] Debasis Bandyopadhyay and Jaydip Sen. "Internet of Things: Applications and Challenges in Technology and Standardization". (May 2011)
[2] Michele Zorzi et al. "From today's INTRAnet of things to a future INTERnet of things: a wireless- and mobility-related view" (Dec, 2010)
[3] Benjamin Sliwa, Nico Piatkowski, and Christian Wietfeld. "LIMITS: Lightweight Machine Learning for IoT Systems with Resource Limitations" (June 2020)

■ DNS [4]:

- Over 300 Related RFCs
- 50+ within the last 10 years

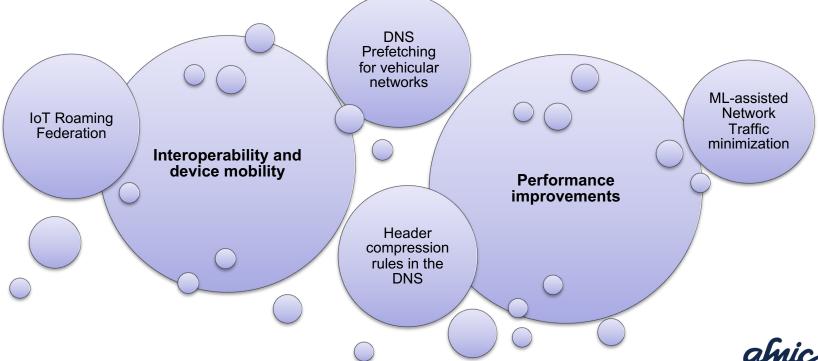
Key concern :

- Security
 - DoT, DoH
 - DNSSEC
 - DANE
- DNS-SD

[4] https://powerdns.org/dns-camel/

Problem Statement

How can the DNS infrastructure improve IoT architectures and services?



Two main challenges

Institut Mines-Télécom

9

Improving device mobility

Building an IoT Roaming federation

IoTRoam

Improving mobility?

- Siloed structures [1]
- Improving mobility
 - Coverage
 - Roaming
- **Building Roaming facilitators**
 - Peer-to-peer
 - Hub [2]
 - Federation [3]

Institut Mines-Télécom

Reference:

[1] Michele Zorzi et al. "From today's INTRAnet of things to a future INTERnet of things: a wireless- and mobility-related view" (Dec, 2010)

- [2] https://www.thethingsindustries.com/peering/
- [3] https://eduroam.org/

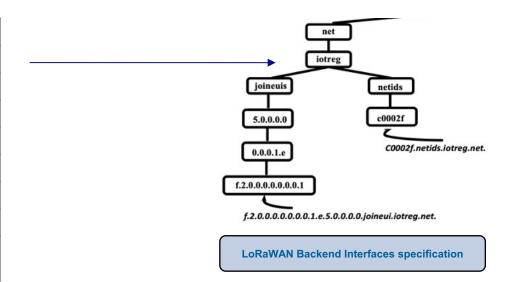
Substituting prior configuration

Peer Net-ID

Roaming Policy

Peer's channel plan

Peer's fNS URL


Peer's sNS URL

Peer's NS IP address

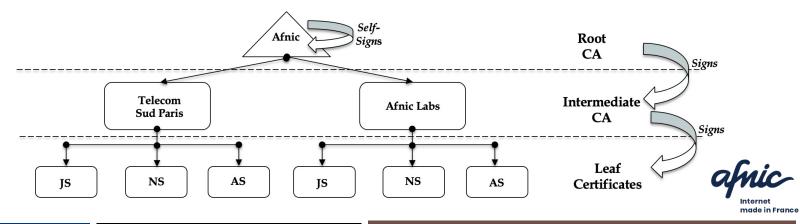
Peer JS URL

Peer JS IP Address

Peer JS Http Credentials

Solving Interoperability and Performance Challenges over heterogeneous IoT

Networks - DNS-based solutions


Security concerns

Institut Mines-Télécom

Securing the channel

Building trust between network

Handling global authentication Conform with LoRaWAN specification

Configuration

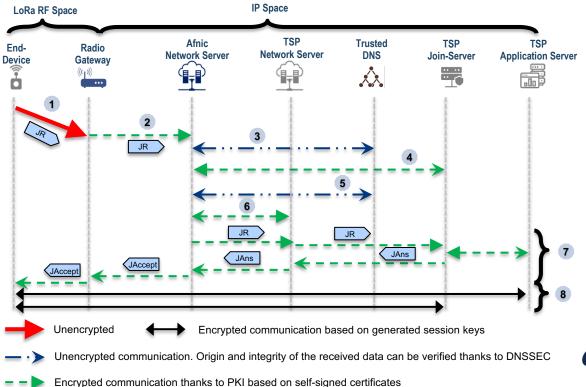
DNS (provisionning and autoconfiguration)

Two central ecosystem

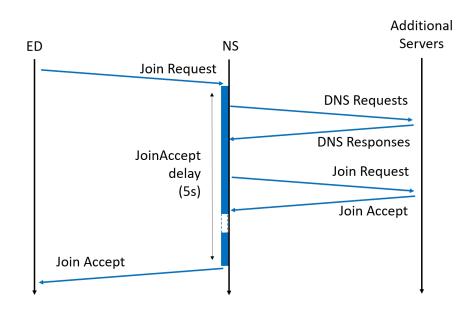
- DNS Registries
- Certificate Authorities

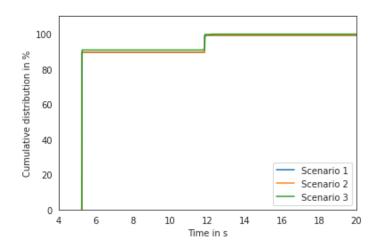
Use DNS as PKI

- Let's encrypt impossible to use
- Paid certificate make the solution less open
- DNSSEC and DANE



LoRaWAN roaming exchange





15

Introduced latency?

1. No Roaming

Solving Interoperability and Performance Challenges over heterogeneous IoT

Networks - DNS-based solutions

- 2. Passive Roaming
- 3. Passive Roaming with additionnal encryption

16

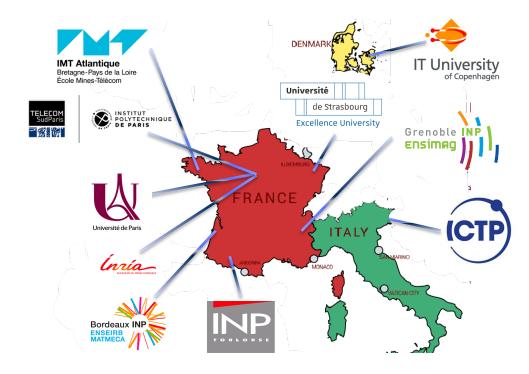
Contributions

- Test infrastructure of LoRaWAN using DNS
- Build and validate the IoTRoam infrastructure
- LoRaWAN specification contribution
- Contribute to the opensource LoRaWAN stack
- Operational, running and open infrastructure

References:

https://lora-alliance.org/resource hub/lorawan-back-end-interfaces-v1-0/ https://github.com/brocaar/chirpstack-network-server/releases/tag/v3.11.0 https://github.com/AFNIC/IoTRoam-Tutorial/

Further work


- Explore dual connectivity
- Enhance with new DNS standards:
 - DNSSEC
 - DANE
- Develop the IoTRoam network

Building a roaming federation

Improving device mobility

Prefetching IoT information onto antennas using DNS

Proposal

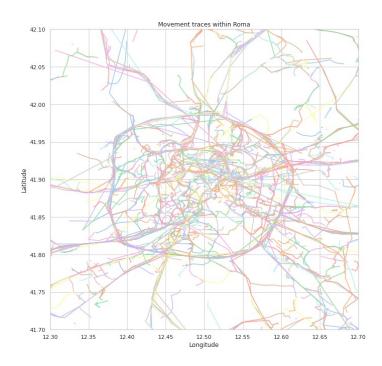
Extend uses from the web

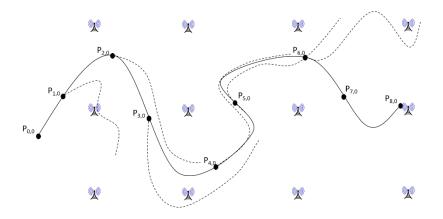
Exploit vehicle traffic prediction to realize the prefetching operation

Prefetch using DNS for its high availability

References:

Driving path stability in VANETs, Laroui et al., 2018


https://www.chromium.org/developers/design-documents/dns-prefetching



Methodology - Traces

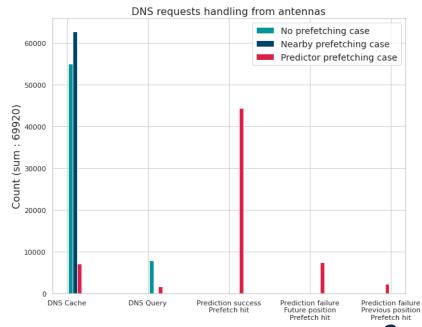
Methodology – Scenarii

■ 3 scenarii

- No DNS Prefetching
- DNS prefetching on nearby gateway

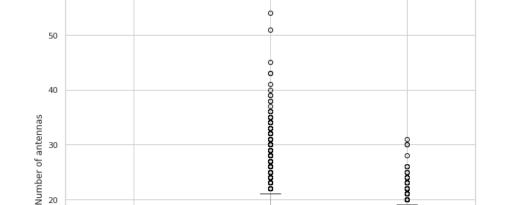
DNS prefetching using ML predictor

	Actual position	T+1 Prediction	T+2 Prediction	T+3 Prediction	T+4 Prediction
Antenna ID (T-5)	Z	L	М	Ν	0
Antenna ID (T-4)	Υ	I	J	K	E
Antenna ID (T-3)	X	G	Ι	D	S
Antenna ID (T-2)	W	F	С	Q	Т
Antenna ID (T-1)	V	В	Р	R	U
Antenna ID (T)	Α				



Results

- 80% On-the-fly DNS query reduction
- Over 60% exact antenna prediction success
- Over 80% prefetched cache hit
- Can save up to a second, around 20% of the time allocated in a join procedure



24

Results

Comparison of number of solicited antennas between no prefetching case, nearby case and predict case

■ 18% less antenas between scenari 2 and 3

Additional study on outliers might be of interest

10

Antennas count no prefetch

Antennas count nearby

Antennas count prediction

Contributions

Overall system specification

Prefetching mechanism simulations based on traffic predictor

Caching heating scenario study

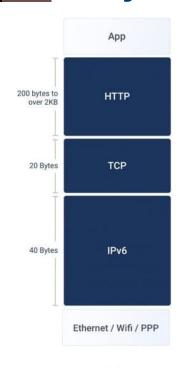
Antennas solicitation breakdown

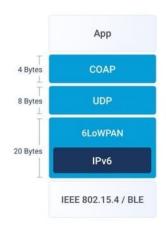
Further work

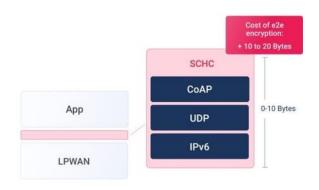
Enhance with other traces

- Study other antennas placements
- Predictor quality impact
- More specific division between road topologies
- Impact from traffic density estimations

Solve performance challenges


Compressing Headers





Why compress headers?

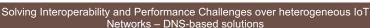
Solving Interoperability and Performance Challenges over heterogeneous IoT

Networks - DNS-based solutions

1000s bytes

100s bytes

10s bytes


SCHC rule example - extract

```
"FID": "IPV6.DEV PREFIX",
    "FL": 64,
    "FP": 1,
    "DI": "Bi",
    "TV": [ "2001:db8::/64", "fe80::/64", "2001:0420:c0dc:1002::/64" ],
    "MO": "match-mapping",
    "CDA": "mapping-sent",
    "SB": 1
    "FID": "IPV6.DEV_IID",
    "FL": 64,
    "FP": 1,
    "DI": "Bi",
    "TV": "::79",
    "MO": "equal",
    "CDA": "DEVIID"
    "FID": "IPV6.APP PREFIX",
    "FL": 64,
    "FP": 1,
    "TV": [ "2001:db8:1::/64", "fe80::/64", "2404:6800:4004:818::/64" ],
    "MO": "match-mapping",
    "CDA": "mapping-sent",
    "SB": 2
},
```


IP PARIS

Source: https://github.com/openschc/openschc

Storing compression parameters

Sharing compression rules

Various scenarios studied

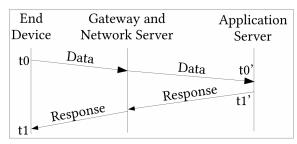
- Measurements
 - **Decompression Time**
 - System latency

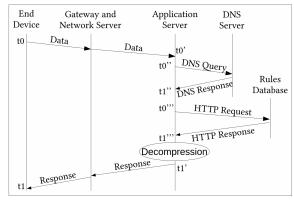
Our proposal

Weight constraints would not allow for efficient full rule storage

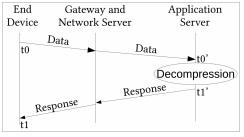
Store a signature information within the DNS

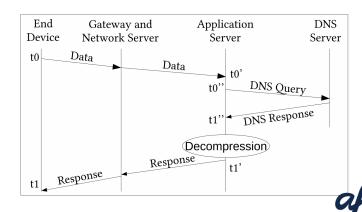
- Mutualize rules when signatures are identical
- Fallback onto a web API to get actual rules





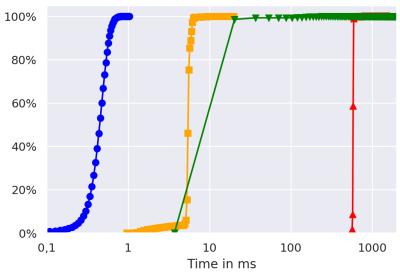
32


Exchanges experiments


1st Experiment

3rd Experiment

2nd Experiment

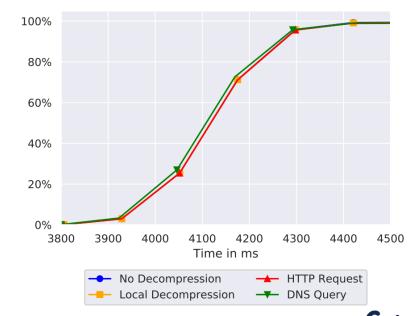


4th Experiment

Our results – Decompression Time

Application Server Response Time without decompression Application Server Response Time local context Application Server Response Time http requested context → Application Server Response Time dns queried context

- **Adding SCHC increase** packet processing time up to 8ms
- Using DNS to query the context would take up to $30 \mathrm{ms}$
- HTTP requests are much slower (around 550ms)



Our results – Global Round Trip Time

- No incidence on the communication as the limiting factor is the reception window.
- All responses are received within the same reception window on the device.

Contribution

SCHC decompression measurement delays

DNS use for rules querying

Institut Mines-Télécom

Impact from DNS querying using Atlas probes

36

Ideas for further work

- Data Model for Static Context Header Compression
 - Full rule storage within the DNS?

Discuss our work with the SCHC community at the IETF

IP PARIS

Institut Mines-Télécom

Solve performance challenges

Compressing application payload

Minimizing traffic

Institut Mines-Télécom

Minimize network traffic from LPWAN sensors

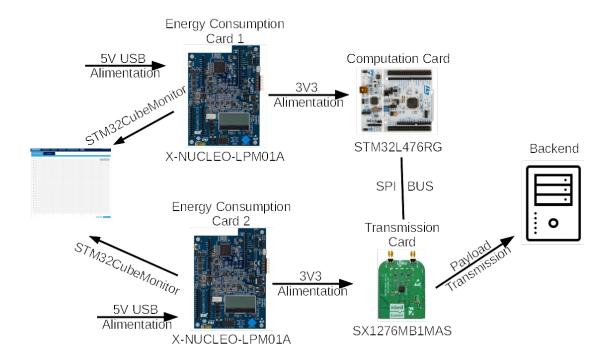
■ Scarce resources

Institut Mines-Télécom

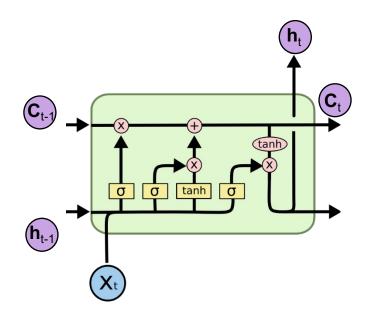
- Increase energy efficiency, save battery
- Sensors generate time-correlated data

Exploit ML techniques to predict this data

Experimentations


- Tests with various technologies
- Unsupported operations
- Discussions with the TensorFlow Lite community
- Handmade implementation to support the algorithm

Experimental setup


Solving Interoperability and Performance Challenges over heterogeneous IoT Networks -

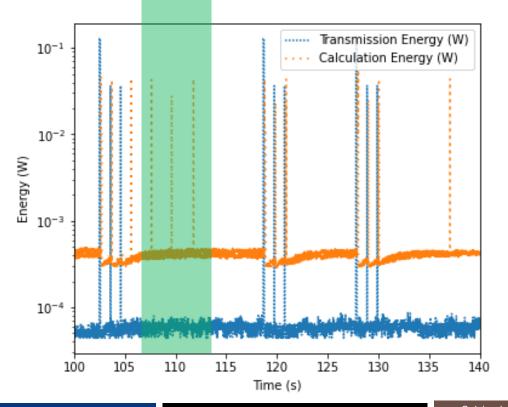
DNS-based solutions

LSTMs and our uses

LSTM are tools that can correlate Long Term dependancies with **Short Term information**

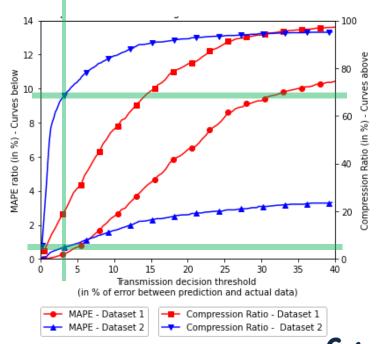
Used in our work to obtain rough time-serie estimation

Source: Christopher Olah, Understanding LSTM Networks, 2015 https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Institut Mines-Télécom

Our Results - Energy

- Two states
- Less activity spikes on the transmission card
- **Transmission prevented in the** green area
- **Energy savings**



Our Results – Compression capabilities

Experimenting with various transmission threshold

- Measuring MAPE & **Compression ratio**
- Two datasets studied

Results

- Reduction in energy consumed
- Efficient overall with sufficient training data
- No significance from the number of cells in neural network
- Quantification is efficient and does not hinder the predictor
- Embedding these algorithms by hand is feasible fuic

Key contributions

Implementation of LSTM compatible with **MBED OS**

Energy measurements

Experimental proof of ML compression schemes applied to networks

Conclusions and Further work

Conclusions

- Do not underestimate DNS
 - **Efficient**
 - Reliable
 - Secure
- Roaming is possible within a federated architecture
- DNS can store protocol parameters
- **DNS Prefetching works with predictors**
- Complex Machine Learning algorithms can be implemented on sensors

Main contributions

- Tests around roaming for LoRaWAN network including a proposition for IoT Roaming Federation
- Design and performance study of a DNS prefetching scheme based on vehicular traffic prediction
- Design and performance evaluation of a traffic minization scheme based on a sensed data predictor.
- Tests and validation of DNS use for SCHC rules resolution.
- LSTM implementation on MBED device and rules sharing

Communications

- Antoine BERNARD, "La découverte de service à l'aide du **DNS". JCSA 2019**
- Antoine BERNARD, "LoRaWAN Experimentations", Doctoral student day @ Telecom SudParis 2019
- Antoine BERNARD, "LPWANs tools to scale up loT solutions from Smart Buildings to Smart Cities". E4C Summer school: From smart buildings to smart cities, July 2021
- Antoine BERNARD, "Embedding ML Algorithms onto LoRaWAN Sensors", LoRa Alliance Academic WG, Oct 2021

International conferences

- ■Antoine Bernard, Sandoche Balakrichenan, Michel Marot, and Benoit Ampeau, « DNS-based dynamic context resolution for SCHC », IEEE ICC 2020
- ■Antoine Bernard, Aicha Dridi, Michel Marot, Hossam Afifi, and Sandoche Balakrichenan, « Embedding ML Algorithms onto LPWAN Sensors for Compressed Communications ». IEEE PIMRC 2021
- ■Sandoche Balakrichenan, Antoine Bernard, Michel Marot, and Benoît Ampeau, « IoTRoam – Design and implementation of an openLoRaWAN roaming architecture », IEEE Globecom 2021
- ■Antoine Bernard, Mohammed Laroui, Michel Marot, Sandoche Balakrichenan, Hassine Moungla, Benoit Ampeau, Hossam Afifi and Monique Becker, « Prefetching of mobile devices information - a DNS perspective », IEEE ICC 2022 (Submitted)

Possible further work based on this thesis

Expand work on DNS storage [1]

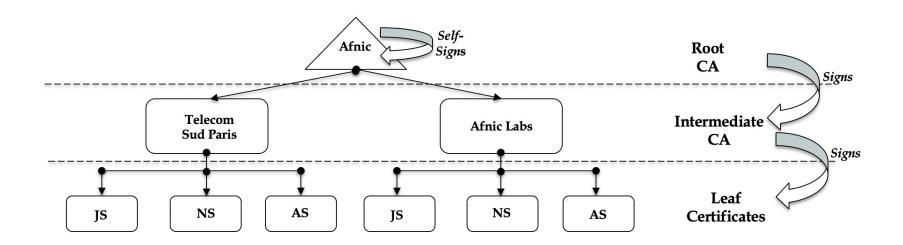
Experiment further on LSTM for MBED device, expanding the work on number of layers and quantification

Questions?

Thanks for your attention

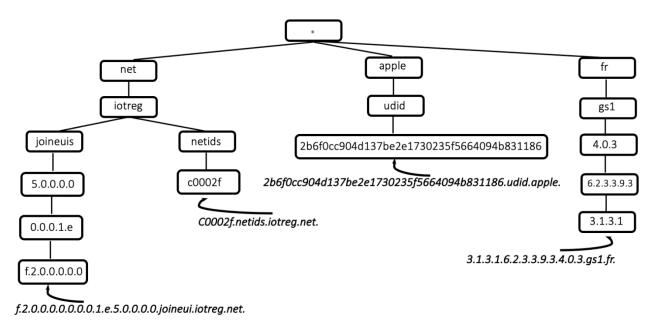
If you need to contact me after this presentation:

thesis@a-bernard.fr these@a-bernard.fr

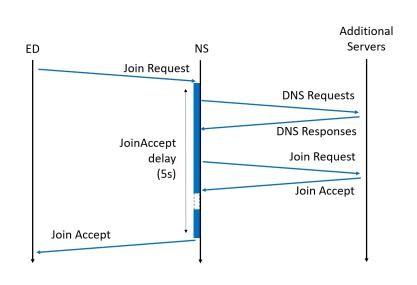

Annexes

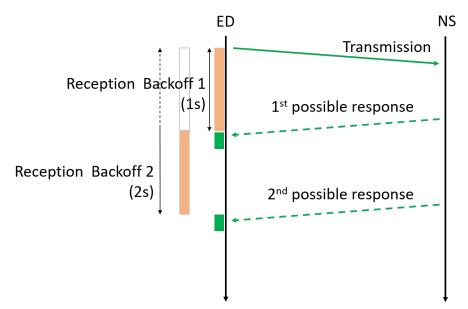
Institut Mines-Télécom

Certificate signing policy

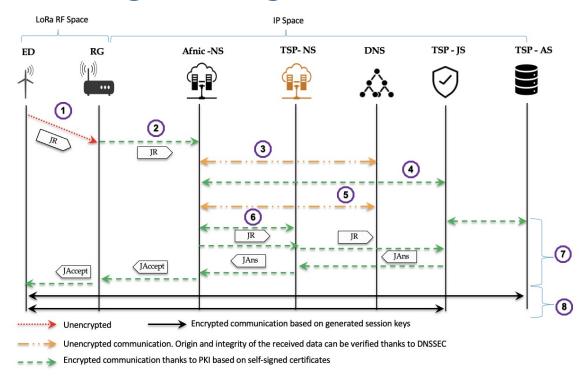


Identifier provisionning through DNS

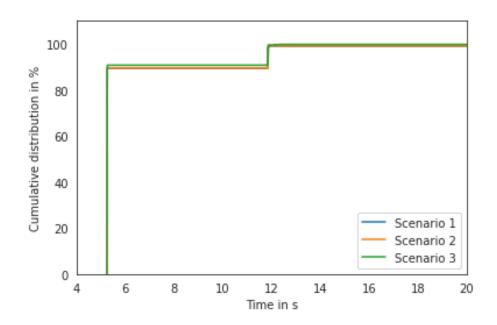

Solving Interoperability and Performance Challenges over heterogeneous IoT


Networks - DNS-based solutions

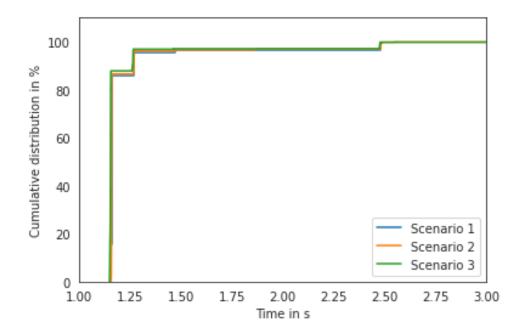
IoTRoam OTAA & Uplink delays



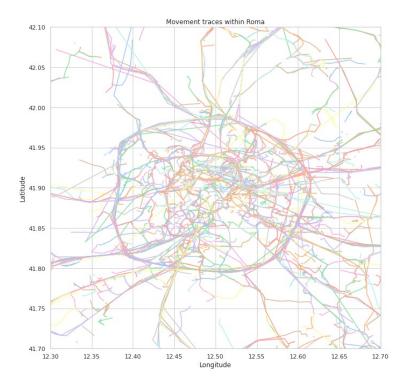
Roaming message flow



Activation time repartition



First uplink - Ack repartition

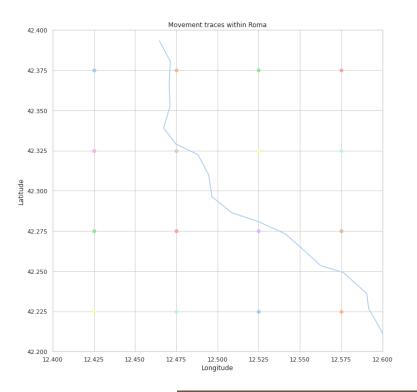

Solving Interoperability and Performance Challenges over heterogeneous IoT

Networks - DNS-based solutions

Movement traces

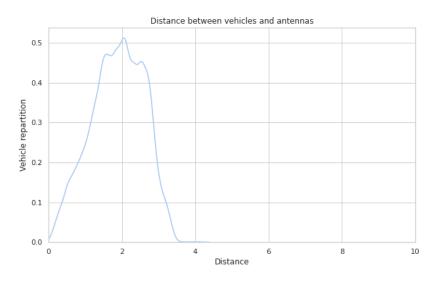
Cache disposition based on predictor

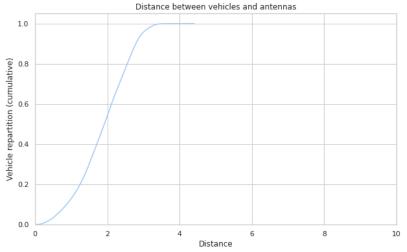
	Actual position	T+1 Prediction	T+2 Prediction	T+3 Prediction	T+4 Prediction
Antenna ID (T-5)	Z	L	М	N	0
Antenna ID (T-4)	Υ		J	K	E
Antenna ID (T-3)	X	G	Н	D	S
Antenna ID (T-2)	W	F	С	Q	Т
Antenna ID (T-1)	V	В	Р	R	U
Antenna ID (T)	Α				



Movement trace and antennas

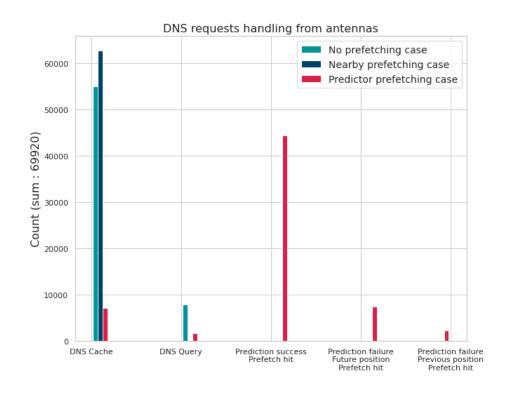
Institut Mines-Télécom



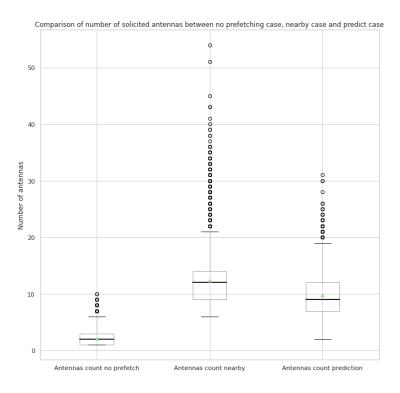


Antenna-vehicule distance

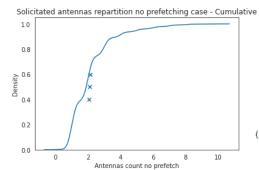
Solving Interoperability and Performance Challenges over heterogeneous IoT

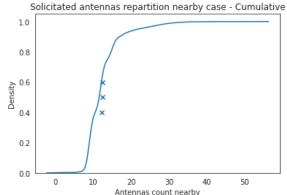

Networks - DNS-based solutions

DNS Queries between scenarios

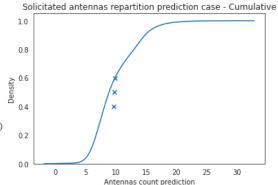


Number of antennas solicited




Antennas solicitation

Institut Mines-Télécom


(2.0738689084017174, 2.1058789954337898, 2.137889082465862)

(12.259453278600654, 12.367294520547945, 12.475135762495237)

(9.6714542796611, 9.754994292237443, 9.838534304813786)

Frame size LPWANs

	LoRaWAN (bytes)	NB-IoT/LTE-M (bytes)	SigFox (bytes)
Frame size	250	1600	29

TABLE 4.1: Max Frame size from the main LPWANs technologies

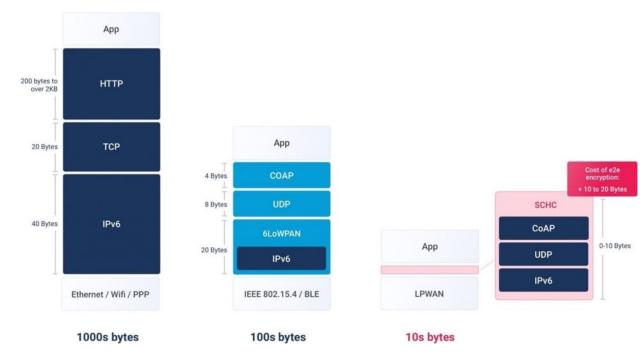

Headers	LoRaWAN	NB-IoT/LTE-M	SigFox	
L2 header	8 octets	14 octets	10 octets	
	3.2 %	0.875 %	34,4 %	
L3 / IPv6 header (40 bytes)	16 %	2.5 %	138 %	
L4 / UDP header (8 bytes)	3.2 %	.5 %	27.6 %	
L5 / CoAP header (4 bytes)	1.6 %	.25 %	13.8 %	
L3+L4+L5 / SCHC (2 bytes)	0.8 %	.125 %	6.9 %	
Cumulative (no SCHC)	24 %	4.125 %	213.8%	
Cumulative (SCHC)	4 %	1 %	41.3 %	

TABLE 4.2: Frame Header Occupationas percentage of frame size for the main LPWANs technologies

Explaining SCHC

Solving Interoperability and Performance Challenges over heterogeneous IoT

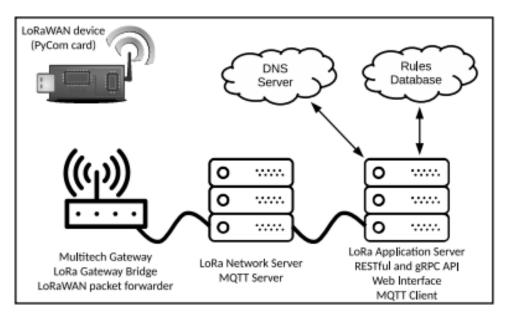
Networks - DNS-based solutions

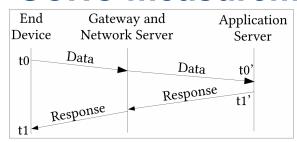
SCHC rule example

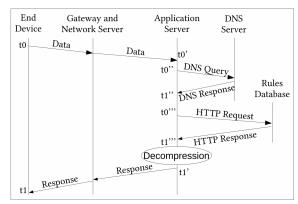
Rule 0

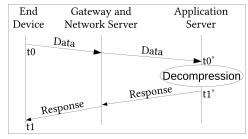
Field	 L						
IPv6 DiffServ	Field	FL 	FP 	DI 	Value	:	!!
	IPv6 DiffServ IPv6 Flow Label IPv6 Length IPv6 Next Header IPv6 Hop Limit IPv6 DevPrefix IPv6 DevIID IPv6 AppPrefix	8 20 16 8 8 64 64	1 1 1 1 1 1 1 1	Bi Bi Bi Bi Bi Bi Bi	0 0 17 255 FE80::/64 FE80::/64	equal equal ignore equal ignore equal ignore equal equal	not-sent not-sent compute-* not-sent not-sent

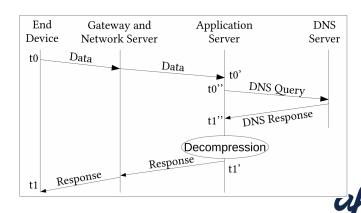
SCHC measurement platform




FIGURE 4.3: Measurement Platform's Network and system architecture (rework this scheme)




SCHC measurements scenarii


1st Experiment

3rd Experiment

2nd Experiment

4th Experiment

AS response time – decompression impact

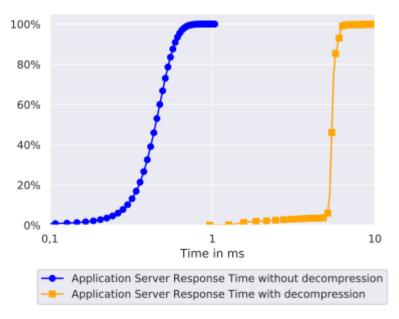


FIGURE 4.8: Cumulative distribution function of the AS Response Time t1' - t0' (in %) against time in ms for Scenarios 1 and 2

AS response time – remote querying impact

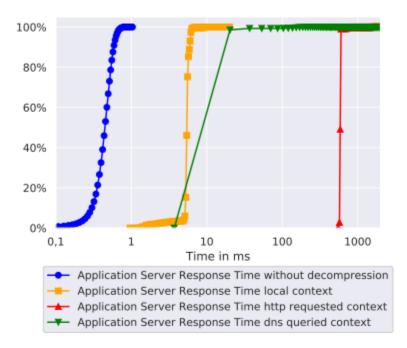


FIGURE 4.9: Cumulative distribution function of the AS Response Time t1' - t0' (in %) against time in ms for all scenarios

DNS Response Time using Atlas probes

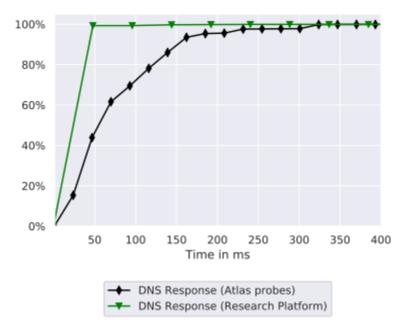
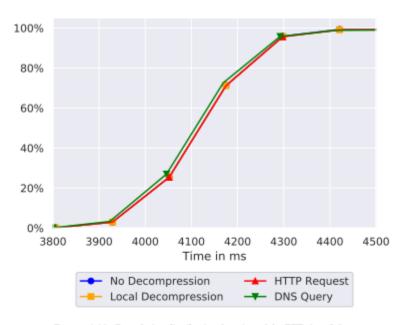
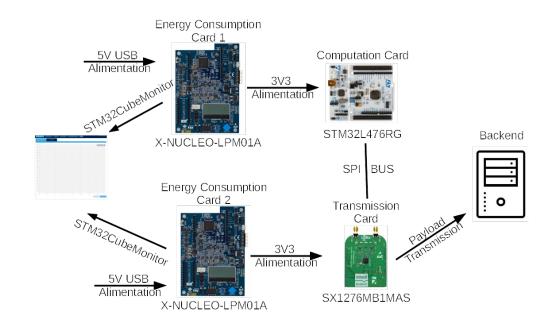


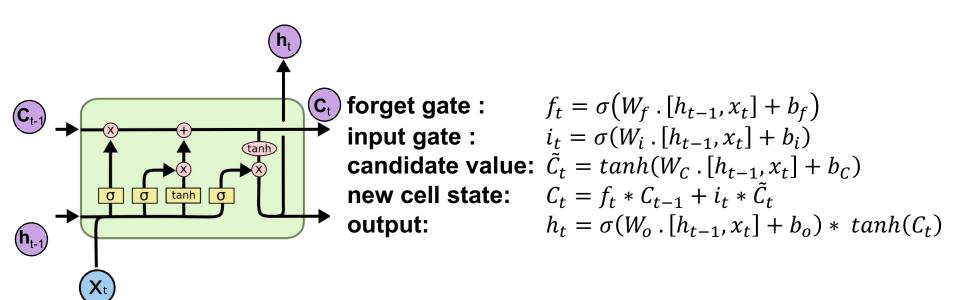
FIGURE 4.10: Cumulative distribution function of the DNS Response Time t1'' - t0'' (in %) against time in ms for Scenario 3 compared and from RIPE Atlas [327] Measurements

Global RTT




FIGURE 4.11: Cumulative distribution function of the RTT t1 - t0 (in %) against time in ms for all scenarios (all the curves are the superposed)

ML Energy Measurements platform

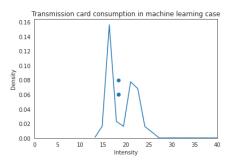


LSTM

Christopher Olah, Understanding LSTM Networks, 2015 https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Energy consumption

Institut Mines-Télécom


TABLE 5.1: Comparison of the mean energy consumption of the calculation card and its variance, with and without LSTM-based compression (in Watts)

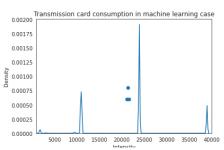
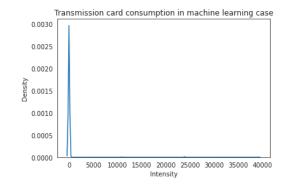
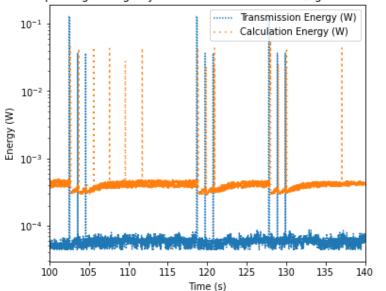

With Machine	Learning	Without Machin	e Learning
Mean value (W)	Variance	Mean value (W)	Variance
6.31 * 10-4	7.57 * 10 ⁻⁵	7.76 * 10 ⁻⁴	7.61 * 10 ⁻⁵

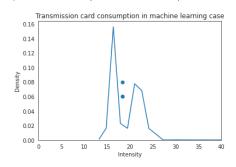
TABLE 5.2: Comparison of the mean energy consumption of the transmission card and its variance, with and without LSTM-based compression (in Watts)

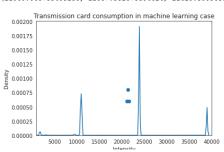

With Machine	Learning	Without Machine Learning		
Mean value (W)	Variance	Mean value (W)	Variance	
5.48 * 10 ⁻⁴	4.10 * 10-5	9.87 * 10-4	7.12 * 10 ⁻⁵	

(18.28661818163327, 18.293796941822553, 18.300975702011836) (21060.063789409185, 21337.932378854624, 21615.800968300064

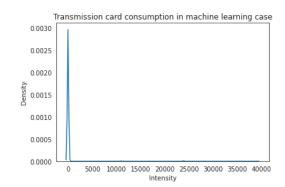
(161.61508877972426, 166.319445587194, 171.02380239466373)





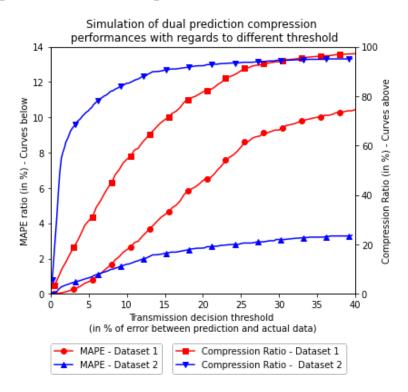

Energy consumption

Power passing through by our electronic cards in W (against time in s)

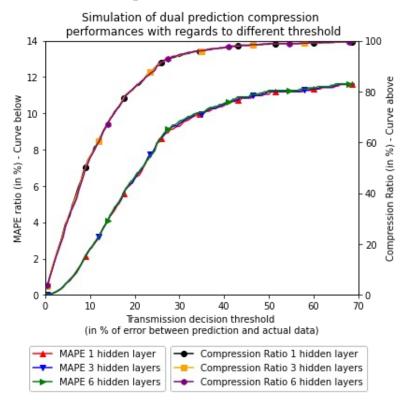


(18.28661818163327, 18.293796941822553, 18.300975702011836) (21060.063789409185, 21337.932378854624, 21615.800968300064

(161.61508877972426, 166.319445587194, 171.02380239466373)

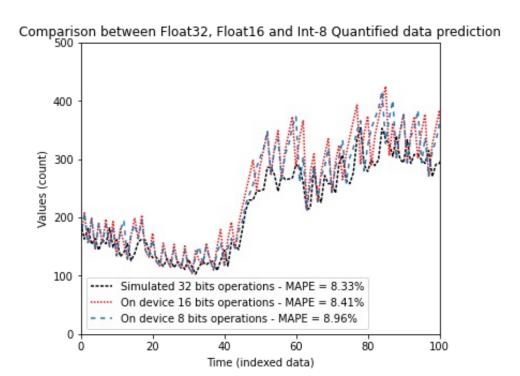


Compression performance & Error rate


Solving Interoperability and Performance Challenges over heterogeneous IoT

Networks - DNS-based solutions

Compression performance & threshold



Quantification results

Institut Mines-Télécom

