
PKI for IoT using the DNS infrastructure
1st Sandoche BALAKRICHENAN

Afnic
sandoche.balakrichenan@afnic.fr

2nd Ibrahim Ayoub
Afnic

ibrahim.ayoub@afnic.fr

3rd Benoı̂t Ampeau
Afnic

benoit.ampeau@afnic.fr

Abstract—The main challenge facing IoT today is security.
The constrained nature of IoT devices deprives them of using
modern security solutions. This leads them to use aged and
more vulnerable security mechanisms that expose them to high
risks. When compared to more powerful devices, constrained
IoT devices cannot use the Public Key Infrastructure with X.509
certificates to establish secure sessions. Moreover, the idea of
self-signed certificates and having one trusted CA does not seem
that popular. The Domain Name System (DNS) using the DNS-
based Authentication of Named Entities protocol (DANE) and
DNS’s security extensions (DNSSEC) can help create the sought-
after Public Key Infrastructure (PKI) for IoT. With a concrete
example, this article explains how DNS can deliver IoT PKI
functions based on DANE, backed by DNSSEC.

Index Terms—DNS, PKI, DNSSEC, DANE, LoRaWAN

I. INTRODUCTION

Internet of Things (IoT) is becoming one of the most
important market segments and the target of all ICT key
players. IoT security mechanisms are still in their infancy and
have failed to keep up with the technology’s rapid growth. The
increasing role of IoT devices in security breaches raises the
issue of enforcing proper security on IoT devices. High-profile
attacks such as the one by the Mirai botnet that exploited
the vulnerabilities of IoT devices illustrate the importance of
having security solutions.

Similar to the Internet, security mechanisms in the IoT
should ensure confidentiality, integrity, privacy and availability
of the services offered. The IoT landscape has different
networking topologies : the prominent ones being mesh, point-
to-point and star topology. In this article, we will focus on the
security issues in the star topology where all IoT devices are
connected to a central gateway. Communication between the
IoT devices and the Cloud servers in the Internet is made
through this central gateway.

In the scope of the star topology, the most common threat
vectors include: physical attacks on the IoT devices such
as tampering with the cryptographic keys; compromising the
cloud servers in the Internet to which the IoT device connects
to via the gateway; man-in-the-middle attacks, where mali-
cious actors eavesdrop and possibly alter the communication
between the source and the destination; exploiting vulnerabili-
ties in IoT devices to organize a Distributed Denial of Service
(DDoS) attacks.

In the Internet, security is enforced by the Public Key
Infrastructure (PKI) through digital certificates. PKI enables
secure authentication and communication between Internet

This work was supported by the French National Research Agency (ANR)
- PIVOT (ANR-20-CYAL-0002).

devices (such as home computers and server) without needing
tokens, password policies or other cumbersome user-initiated
factors. But the PKI infrastructure cannot be directly applied
in the current state in the IoT due to various challenges.

Current security mechanisms in IoT are based on proprietary
closed solutions, which translates to an increased cost for
end-users and hinders the possibility of secure communication
between different security solution providers. A second chal-
lenge is that most low-end IoT devices are highly constrained:
they have little memory, limited processing capacity and
power. The third challenge is to provide open authentication
support and trusted anchors with scalable key distribution
required to secure communication channels like in the current
Internet so that IoT devices can bootstrap application-specific
security mechanisms. The fourth challenge is bootstrapping
trust.

The traditional use of PKI does not fit constrained IoT
devices: since it required sufficient computing power, storage
for the chain of trust and sufficient bandwidth for sending
and receiving certificates, encrypted data using large block
ciphers and signatures, as well as obtaining revocation lists,
are technically and economically infeasible for this class of
devices. This article explains the concept of replacing the
trust and security schemes based on the traditional PKI with
a novel approach that relies on the DNS (Domain Naming
Service) [1] [2] infrastructure and builds all the required
functionalities upon DNS. DNS brings the advantage of a
single trust anchor with lightweight authentication schemes
suitable for constrained IoT devices and easily automated for
large-scale IoT deployments.

In this article, we start with the challenges of IoT security
State of the art description in II, followed by a detailed
illustration of how the Internet communication security is
complemented using the DNS-based PKI in III and finally
conclude on how the DNS based PKI can be applied to one
of the most constrained IoT networks in V.

II. STATE OF THE ART – CHALLENGES OF IOT SECURITY

A recent NIST report [3] recommends to address cyberse-
curity and privacy risks for IoT devices with three high-level
mitigation goals:

• protect device security (prevent a device from conducting
attacks)

• protect data security (guarantee confidentiality, integrity
and/or availability of data)

• protect privacy (prevent disclosure of personally identifi-
able information)

Most low-end IoT devices are highly constrained: they have
limited memory, processing capacity, and power. Managing
Public Key security mechanisms as deployed in the Inter-
net on such devices and transferring them over bandwidth-
constrained IoT networks is too heavy and therefore represents
a significant challenge.

Bootstrapping trust when an IoT device connects to the
network and starts to operate is a security concern. The device
is usually equipped with an identifier and a Pre-Shared Key
(PSK) to contact some servers on the Internet associated
with the IoT device for onboarding. PSK needs to be shared
between stakeholders in the supply chain—from the OEM
(Original Equipment Manufacturer) to the device owner, the
network service provider, the application server provider, etc.
PSK is often shared insecurely, such as printing the keys
on the back of devices, sending via mail or printing on
the invoice. There have been reports of massive breaches of
PSK provisioning systems, which are vulnerable to passive
pervasive monitoring. There are secure ways in which PSK
could be shared, but they rely on proprietary cloud services
or secure key elements, which could increase the cost of IoT
services.

Most of the existing IoT security and data protection
solutions are not generic. Proposed approaches will have to
balance improving security, trust, and privacy and allow scope
for innovation and evolution within the market. Open security
standards like those defined for the Internet should be adapted
for IoT to satisfy the resource-constrained requirements, thus
reducing costs. Finally, the provided solutions should be
immediately deployable into legacy or new IoT technologies.

Current security mechanisms in IoT are based on proprietary
closed solutions, which translates to an increased cost for
end-users and businesses. Weak IoT security has its roots in
economic factors because of the tension between cost and
security objectives. Including adequate security and privacy in
IoT costs money and slows the product development process.
In addition, security requires specialized skills and experience
that manufacturers may not have at hand, requiring either new
stable or external consulting, both of which increase costs. The
proposed IoT security solutions should not incur additional
costs hindering innovation and evolution in the IoT market.

The essential aspect of IoT concerns heterogeneous types of
devices and communication networks with different require-
ments, thus creating closed independent silos and leading to
interoperability issues. Past efforts to create a single architec-
ture to provide security, privacy and trust in the heterogeneous
IoT ecosystem did not succeed.

III. KEY MANAGEMENT IN THE INTERNET

In web browsing communication, first (Fig. 1), the browser
obtains the IP address of a domain name using the DNS
infrastructure and secondly it connects to the domain’s web
server using the IP address via Hyper Text Transfer Protocol
(HTTP) connection.

For the first operation, securing the communication dur-
ing DNS resolution could be provided by DNS Security

Figure 1. Internet communication without any security

(DNSSEC) [4] described in subsection III-B. For the second
operation, the Transport Layer Security (TLS) protocol comes
to the rescue, allowing the client and the server to authen-
ticate each other and negotiate an encryption algorithm and
cryptographic keys before the data is exchanged. TLS ensures
that data cannot be tampered with during transit since the data
is encrypted. Details of the second operation is explained in
subsection III-A

A. Public-Key Infrastructure X.509 (PKIX)

Encrypting and decrypting the data in the TLS protocol
is done by a matching pair of cryptographic keys: public
and private key. The Data encrypted by a public key can
be decrypted only by the corresponding private key and vice
versa, enabling secure communication with unknown users.

A website (e.g., a bank) publishes its public key for anyone
to download. An account holder in the bank, Alice, encrypts
a message using the public key and sends it to the bank. Only
the bank can decrypt the message using its private key. Thus,
Alice is sure that her message is accessed only by the bank
and not by anyone else.

On the other hand, there is a possibility that an impersonator
publishes their public key posing as Alice’s bank. Alice will
encrypt the message using the public key and send it to the
impersonator, thinking she is communicating with her bank.
The impersonator could do a man in the middle and copy
the message. As the impersonator is the owner of the public
and the private key, it will enable them to decrypt and read
the message sent by Alice. Thus, there arises a possibility
that anyone can create a public key for accessing any domain
name.

Hence, binding between the identity (e.g., the domain name)
and the public key is necessary. The X.509 standard [5]
proposed by the ITU and ISO provides a mechanism to bind
a particular public key to a specific identity. The domain
holder can do this binding, and in that case, it is called a

self-signed certificate. If the self-signed certificate is obtained
from a trusted source by the application using the certificate
for authentication, then it is accepted. Otherwise there is no
guarantee of the certificate’s authenticity.

1) The Certification Authorities (CAs) role: This is where
the need for a trusted third party arises. It is just like the
passport wherein it can be issued only by a trusted third party
delegated by a country’s government. The trusted authority
attests that the person in the photo is identified by a particular
name, surname and other credentials.

In web browsing, a digital certificate issued for a domain
name, is like the passport. In the PKIX ecosystem, the role
of the trusted authority is played by organizations called CAs.
A certificate issued by a given CA binds the given domain
name with information such as the certificate assignee, the
entity which has requested the certificate, its validity period
etc. The CA is used to assert to the browser that the web
server represents the domain asked by the client. A TLS
connection is established between the browser and the web
server on successful authentication of the certificate. With the
TLS connection established, the traffic between the browser
and the web server is encrypted and is protected against any
third-party eavesdropping.

Similar to how a passport attested by one country’s trusted
authority is accepted by other countries as a validated doc-
ument for authenticating a person, browser vendors (such as
Firefox, Chrome, Internet explorer, Safari etc.,) accept digital
certificates created only by certain CAs. The browser vendors
authorize an organization to be a CA only after understanding
that they are trustworthy and they follow strict principles
and procedures to provide certificates only for correct domain
holders. Once the browser vendors authorize an organization
to be a CA, the latter’s digital certificate is added to the list of
trusted CAs in the browser library. Thus, once a client using a
browser accesses a domain name which has a digital certificate
generated by one of the CAs among its pre-installed list, the
certificate is implicitly trusted, as shown in Fig. 2.

B. Using DNS infrastructure and its security extensions as
PKI

PKIX provides data origin authentication, confidentiality
and data integrity. The DNS resolution, as illustrated in Fig.
1 doesn’t have such security features. DNSSEC enables the
possibility to provide origin authentication of DNS data, data
integrity and authenticated denial of existence for the DNS
resolution.

In PKIX, data origin authentication is provided by the digital
certificate. TLS provides confidentiality and data integrity.
Data is encrypted only during transmission, and the data stored
in the server end is not encrypted. In the case of DNSSEC,
the data at the server end, i.e. in the DNS zone, is encrypted
using the public and private keys. Hence data in the DNS zone
is encrypted before being transmitted in the network. In the
PKIX model at the client end, an HTTP user agent such as a
web browser is used for validation. In DNSSEC, a validating
resolver is used to verify the integrity of the transmitted data.

Figure 2. Secured Communication between the browser and the web server
using the PKIX ecosystem and TLS

1) A DNSSEC primer: Since DNSSEC is an extension of
DNS which acts upon a DNS zone, it is important to have
some basic idea of a DNS zone.

Figure 3. DNS Tree example

As shown in Fig. 3, the Top Level Domain (TLD) “.fr”
has two sub domains “example.fr” and “afnic.fr”. But, “.fr”,
“afnic.fr” and “example.fr” are three separate zones. Each of
these zones contains all the data for their specific domains. For
example, the “.fr” zone contains data specific to the “.fr” do-
main managed by one entity. Similarly, “example.fr” contains
data specific to the “example.fr” domain, which will/could be
managed by a different entity. A fictitious example of a DNS
zone file for a fictitious domain “example.fr” is as follows:

; Zone file for www.example.fr
$TTL 1h ; Time To Live
example.fr IN SOA ns.example.fr.

host.example.fr.
(

2022060304; Serial number
3h ; Refresh
1h ; Retry

1h ; expire
1h ; Negative cache

)
example.fr. IN NS dns1.examplehost.fr.
example.fr. IN NS dns2.examplehost.fr.
example.fr. IN A 192.168.0.100

To enable DNSSEC, using the Public-Key cryptographic
technique, the zone administrator (for a zone such as ”ex-
ample.fr”) creates a public and private key pair. The private
key is accessible only to the domain owner, and all can access
the public key.

DNSSEC zone administrators are recommended to create
two pairs of public and private keys, wherein one is called the
Zone Signing Key (ZSK), and the other pair is called the Key
Signing Key (KSK). Both public keys are published in the
domain’s DNS zone, and they are referred to as ”DNSKEY”.
A sample of DNSKEY record in a signed DNS zone is as
follows:

; ZSK public key
example.fr. IN DNSKEY 256 3 5

AwEAAda013Wp4CQaUBrExCIRZCYpThKqyr
pAaC7rAm2Jn+VlYnzIqmwELmn0EqIsdf03
/e7cV8Bao94dX3xdcK+kZ6t5Of1hOLal5q
yn/nsKZlH247VsEE62lHQNBnxPBHIpwUL7

; KSK Public key
example.fr. IN DNSKEY 257 3 5

A9Vze/B+hmwDJ+83cZ1JWW2G9geiboeMy
iuuoXB7FVavuIHJtiux+WjseJeQ4XYUGV
DZkPyXiJWQ/rL7azGiZB2CKPMxHyr3L5P
d1rjC50DQS45TFDvemAmvezCBs6sUtlD8

In a DNSSEC-signed zone, every single Resource Record
set (RR set) [6] has one (sometimes more) corresponding
RR signature (RRSIG) record [7]. The RRSIG is the digital
signature of the RRset. The RRSIG is produced by hashing
the RRset and encrypting the hash with the concerned private
key.

The private key of the ZSK is used to produce the RRSIG
for all the contents of the DNS zone, except for the two
DNSKEY records. It is important to note that the signed
DNSSEC zone contains the RRSIG and the original unsigned
data. The below example shows the contents of the “A” type
RR for a DNSSEC, signed zone “example.fr”.

; Unsigned ‘A’ type RR
example.fr. 1 A 192.168.0.100

; RRSIG for ‘A’ type RR
example.fr. 1 RRSIG A 5 5 1
(

202206300640 202206030640 3960 example.fr.
s8dMOWQjoTKEo1bsK+EYUY+32Bd84300FcJfl
00FcJflqthv1u60DVDVobllhqt0AaiD/dlnn7
32Bd84300FcJflqthv1u60DVDVobllhqt0Aai

)

C. Building the Chain of trust

DNSSEC adds a level of security wherein if the original
IPv4 address (e.g., “192.16.0.100”) in the zone “example.fr”
is modified to “198.51.100.1” by an impersonator during DNS
resolution, a DNSSEC validating client application will find
it out. The reason is that the corresponding RRSIG will not
match with the hash of the original RR on un-signing.

But there is a possibility that the impersonator successfully
sent the false IP address and the corresponding RRSIG, signed
by their own generated private/public key pair before the
valid response. And, if the public key is trusted, a DNSSEC
validating client application would not be able to find out that
the data has been tampered with.

In the PKIX model, to counter such a compromise, the
certificate generated by the web server was authenticated by
a trusted third party, i.e. the CA. In the DNSSEC case, the
validation of the public key is based on a cryptographic chain
of trust.

Figure 4. An example of how the chain of trust is established

Fig. 4 illustrates the process of building the chain of trust:
1) From the KSK DNSKEY of the “zone example.fr”, a

Delegation Signer (DS) RR [9] is created. The DS RR is
the hash of the KSK DNSKEY. This DS RR is published
in the parent zone of “example.fr”, which is “.fr”.

2) This record has to be signed by the parent zone ZSK
private key, i.e. by the ZSK private key in “.fr” to get
the RRSIG of the ”example.fr” DS.

3) Similarly the DS record for the “.fr” zone is published
in its parent zone, which is the DNS root “.”

4) As in Step ’2’, the RRSIG of ”.fr” DS is obtained by
by signing the ”.fr” DS with the ”.” KSK as shown in
step 4.

This is how the chain of trust is established.

D. Verification of the data using the chain of trust

Subsection III-C explained the process of building the chain
of trust. This subsection describes how a DNSSEC-aware
resolver validates a DNSSEC-enabled DNS query/response.
For DNSSEC resolution, the ”public key” of the DNS zone
must be configured with a DNS resolver that validates with
DNSSEC. Usually, most resolvers have the public key (KSK
DNSKEY) of the DNS root ”. ”as ”Trust Anchor”.

The resolver can be on the local computer or at a remote
location (such as at the ISP). Let’s assume that the DNSSEC
validating resolver is at the ISP and doesn’t have the IP
address of ’example.fr’ in its cache. It begins a recursive
query to identify the DNS server that holds the authoritative
information for ’example.fr’.

The DNS resolution process starts top-down from the ”.”
to ”.fr” to ”example.fr” authoritative servers. Each of these
authoritative servers will add additional DNSSEC data to the
DNS responses. This additional data, in effect, is the digital
signature of the DNS data contained in the response, i.e. the
RRSIG.

1) The ’A’ record of ’example.fr’ is validated through its
RRSIG (in the same reply) using the DNSKEY of
’example.fr’

2) The DNSKEY of ’example.fr’ is validated through its
RRSIG using the DS of ’example.fr’

3) The DNSKEY of ’.fr’ is validated through its RRSIG
using the DS of ’.fr’

4) The DNSKEY of the root zone ’.’ is validated through
its RRSIG using the trust-anchor

E. DANE (DNS Authentication of Named Entities) [8] - Aug-
menting the security in PKIX

1) The problem of many: At a glance, if we look at the
size of the list of CAs accepted by popular browsers such as
Chrome, Firefox, Internet explorer, etc., it varies but is in the
range of hundreds. For example, a browser such as Firefox
trusts 1,482 CA Certificates (as per EFF SSL observatory
in 2010) provided by 651 organizations. Complementing the
issue is that in the CA ecosystem, there is a practice of a CA
providing authorization to other organizations or its branches
to create certificates on its behalf. They are called subordinate
CAs. A browser will trust the digital certificate produced by
the subordinate CA also.

Even if one CA among the list of CAs, or its subordinates
are compromised, it can generate a certificate for any domain
name, which could then be authenticated by a browser, thereby
compromising a secure web communication. For instance, two
different CAs (where one is a compromised CA) can issue two
separate certificates for the same domain, which the browser
will trust. The lacunae here is that the domain owner has no
way of telling the browser which CA certificate to be used to
authenticate to connect to the server of the particular domain.

2) Limiting the attack surface, what are the options?:
Different techniques were proposed to reduce the attack
probability in the PKIX model such as Trust on First Use
(ToFU) [9], Certificate Transparency (CT) [10], Certificate

Authentication and Authorization (CAA) [11] and DANE.
Of the different technologies proposed to limit the attack
surface, ToFU is the easiest to implement because it needs
only a browser to install the ToFU compatible browser add-
on. Perspectives and CT are a system of Notary services which
does not completely coexist with the current PKIX model and
need additional services acting as notary services. CAA is like
a hack which does not need any modifications and, in the
short term, looks like a better option for limiting the attack
surface. But looking at security from an end-to-end perspective
and providing more options to the users (such as self-signed
certificates), DANE ranks high.

3) DANE Primer: DANE standardizes the usage of the
TLSA (TLS Authentication) RR as shown in Fig. 5. TLSA
RR for a domain name is published in the domain’s DNS
zone to indicate the certificate information that corresponds to
a specific service on a specific port of a name in that zone.

Figure 5. TLSA RR explained

As shown in Fig. 5, the TLSA resource record consists of
four fields: the ”certificate Usage”, ”a Selector”, ”a Matching
type”, and the ”Certificate for association” data. The appli-
cation must match the ’certificate for association data field’
in the TLSA RR with the target certificate (i.e. the certificate
obtained from the domain’s web server) based on the other
values (certificate usage, selector and matching type) in the
TLSA resource record.

For DANE to augment the security in the existing PKIX
model, the domain’s DNS zone should be DNSSEC signed,
and the DNS resolution validated using DNSSEC. DANE pro-
tocol enables the domain owner to pinpoint the CA certificate
the browser should use to validate the certificate obtained from
the web server, thus reducing the attack probability.

IV. IOT SYSTEM OVERVIEW

IoT connectivity technologies could be classified broadly
into three categories: Short Range (Bluetooth, Zigbee, Zwave),
Medium range (WiFi) and Long-range (LoRa, NB-IoT, Wi-
Sun, Sigfox).

We plan to validate our hypothesis of using DNS-based PKI
on LPWAN (Low-Power Wide Area Networks), considered
the most resource-constrained IoT networks, and then extend
them to other types of networks. If the DNS-based PKI work
for LPWAN, it should also work for other less constrained
networks.

In the LPWAN category, we short-listed LoRaWAN since,
compared to other IoT connectivity technologies, the Lo-
RaWAN ecosystem provides the freedom to its stakeholders
to make their own choices in choosing the ED manufacturers
Service providers, and applications providers. Since the radio

connectivity uses a license-free spectrum, the freedom of
choice in LoRaWAN extends to deployment options. Public
LoRaWAN has nationwide coverage; private LoRaWAN fo-
cuses on specific use-cases and community networks that can
be used for free by end-users.

Figure 6. LoRaWAN Key Distribution

LoRaWAN is an asymmetric protocol with a star topology
as shown in the Fig. 6. Data transmitted by the IoT ED
(End-Device) is received by a Radio Gateway (RG), which
relays it to a Network Server (NS). The NS decides on
further processing the incoming data based on the ED’s unique
identifier (DevEUI). The NS has multiple responsibilities
like forwarding the uplink from the ED to the Application
Server (AS), queuing the downlink from the AS to the ED,
forwarding the ED onboarding request to the appropriate AA
(Authentication Authorization) servers, named as Join Server
(JS) in LoRaWAN terminology. While the ED is connected to
the RG via LoRa modulated RF messages, the connection
between the RG, the NS and the AS is done through IP
traffic and can be backhauled via Wi-Fi, hardwired Ethernet
or Cellular connection.

The JS acting as the AA server controls the terms on
how the ED gets activated (i.e., onboarded) to a selected
LoRaWAN. There are two types of ED activation: Over the Air
Activation (OTAA) and Activation by Personalization (ABP).
With ABP, the ED is directly connected to a LoRaWAN
by hardcoding the cryptographic keys and other parameters
required for secured communication. With OTAA, the param-
eters necessary to create a secured session between the ED
and the servers in the Internet are created dynamically. This
secured session is similar to the TLS handshake used in the
HTTPS connection. OTAA is preferred over ABP since it is
dynamic, decouples the ED and the backend infrastructure,
and doesn’t need session keys to be hardcoded.

The ED performs a Join procedure (i.e. the onboarding
process) with the JS during OTAA by sending the Join Request
(JR). The JR payload contains the ED’s unique identifier (i.e.
the DevEUI), the cryptographic AES-128 root keys: NwkKey,
AppKey and JoinEUI (unique identifier pointing to the JS).

The JS associated with the ED has preliminary information
such as the ED’s DevEUI, the cryptographic keys: NwkKey
and AppKey (as shown in the Fig. 6) required for generating
session keys to secure the communication between the ED and
the NS and AS.

A. Key Sharing challenge between multiple Stakeholders

As shown in the Fig. 7, the IoT ED manufacturer injects
the root keys - NwkKey and AppKey into the ED. Since
LoRaWAN has the potential of multiple stakeholders, there
is a need for these root keys to be pre-shared with them. The
process of sharing the root keys is currently done by printing
the keys behind the device, sending them via mail etc. which
is not secure.

Figure 7. LoRaWAN Key injection sharing

One method of solving this operational nightmare is to use
asymmetric keys based on a PKI as used to secure web traffic.

B. PKI Challenges in IoT

1) Constrained IoT devices and network: LoRa-based IoT
devices are highly constrained: they have little memory,
limited processing capacity, and limited power. We plan to
experiment with our hypothesis on Class 0 and 1 [12], which
are very constrained with RAM size much less than 10 KB
and flash memory much less than 100 KB. For Class 1, they
are around 10 KB and 100 KB, respectively.

The LoRaWAN specification [13] defines a maximum data
payload for each worldwide region. This full payload size
varies by DataRate (DR) because of the maximum on-air
transmission time allowed for each regional specification.
While 52 bytes is the maximum payload in Europe, in the U.S.
and other regions that operate in the 900MHz ISM band, the
lowest DR is restricted to 11 bytes. These limits are chosen to
meet the requirements of the regulatory agencies of the region.

Due to the ED and the network constraints, The CA model
for issuing the X.509 digital certificates is not operationally
feasible for LoRaWAN. The primary issue with the X.509 dig-
ital certificates is its size. Thus not compatible with resource-
constrained IoT networks. Asymmetric Keys using PKI, which
have worked well for secure Internet communication, cannot
be used due to its size. It is impossible to send a 2048 byte

X.509 digital certificate over a LoRaWAN Communication
which has an MTU (Maximum Transfer Unit) of 52 bytes.

2) Non Availability of dedicated CA infrastructure for IoTs:
In the web, the browser client (such as Chrome or Firefox) has
a certificate store containing thousands of Root CA certificates.
The browser authenticates any server that delivers an X.509
certificate digitally signed by anyone of the Root CA in
its certificate store. Such certificate store infrastructure is
unavailable in the LoRaWAN backend network elements or
any IoT backend infrastructures.

3) Cost: Even if we assume the infrastructure exists, the
digital certificates come at a cost, which is not viable for most
IoT services. We tried ”Let’s encrypt”, which provides X.509
digital certificates for free. However, it was not possible to
benefit since they do not offer certificates for domain names
with more than ten labels (JoinEUI has more than 16 labels).
A viable solution to resolve the operational and cost issue is
to generate our Self-Signed certificates.

V. USING DNS-BASED PKI IN IOT
We propose designing an open PKI for IoT using the DNS

protocol and its security extensions - DNSSEC and DANE.
For secure ED onboarding, the interface between the back-

end network elements (the NS, JS and the AS) in the IP space
(Fig. 6) should be mutually authenticated (i.e., both the client
and the server authenticate each other), as per the LoRaWAN
backend specifications [14]. Nevertheless, how mutual authen-
tication should be done is left to the implementer’s choice and
is not normative.

A viable solution to resolve the operational and cost issue
is to generate Self-Signed certificates.

Figure 8. Certificate provisioning infrastructure

A CA provisioning infrastructure (Fig. 8) was set up where
Afnic emulated the Root CA role and generated intermediate
certificates for two LoRaWAN - TSP (Telecom Sud Paris) and
Afnic Labs. Complete details on setting up the infrastructure
is provided in the Quick Start guide [15].

During testing, we identified that combining the interme-
diate and the server leaf certificate (a combined trust chain
- Fig. 9) during a TLS handshake could bypass the need for
having a certificate store with all intermediate certificates. The
validating server needs to store only the root CA certificate.
The certificate validation process is done by sending the
combined trust chain to the server’s IP address. On receiving
the combined trust chain, the server first verifies the leaf
certificate in the combined trust chain. When the leaf cer-
tificate is unknown, it checks the following certificate in the
chain, the intermediate certificate. Since the root CA signs

the intermediate certificate, the combined certificate chain
becomes trusted. Thus, the backend network elements (NS,
AS and the JS) could be mutually authenticated even if they
are in different networks since they have a common root CA
at the top of the chain of trust.

Since the infrastructure uses self-signed certificates, there is
no cost involved.

A. Need for DANE?

The issue with the certificate provisioning infrastructure
using a single root CA (Fig. 8) creates a single private PKI.
This approach fails from an operational feasibility perspective
as number of stakeholders are not willing to be restricted to a
single CA.

Figure 9. Certificate Validation Process

The IETF DANCE (DNS Authentication of Named Clients
Everywhere) WG (Working Group) [16] seeks to make PKI-
based IoT device identity universally discoverable, more
broadly recognized, and less expensive to maintain by using
DNS as the constraining namespace and lookup mechanism.
DANCE builds on patterns established by the original DANE
RFCs [8] [17] to enable client and sending entity certificate,
public key, and trust anchor discovery. DANCE allows entities
to possess a first-class identity, which, thanks to DNS, may be
trusted by any application also relying on the DNS. A first-
class identity is an application-independent identity.

The IETF DANCE WG is discussing two Internet drafts [18]
and [19] based on DANE, which possibly solves the single
root CA issue. For this to work, a TLS Client should have a
signed DNS TLSA record (as in Fig. 5) published in the DNS
zone corresponding to its DNS name and X.509 certificate or
public key.

[19] specifies a TLS extension to convey a DANE Client
Identity to a TLS server. The extension contain the client
identity in the form of the DNS domain name that is expected
to have a DANE TLSA record published for it as shown in
the example below:

light_sensor._device.example.com. IN TLSA (
3 1 2
0f8b48ff5fd94117f21b6550aaee89c8
d8adbc3f433c8e587a85a14e54667b25
f4dcd8c4ae6162121ea9166984831b57
b408534451fd1b9702f8de0532ecd03c)

During the TLS handshake, the server requests a client
certificate (via the ”Client Certificate Request” message). The
server then extracts the DANE client identity, constructs the
DNS query name for the corresponding TLSA record and
authenticates the client’s certificate or public key. During
mutual authentication, both the client and the server could be
authenticated as shown in the Fig.10

DANE-based mutual authentication enables using a self-
signed certificate with different Root CA’s. Thus, each institu-
tion can choose its Root CA to sign the certificates and validate
dynamically based on DANE client identity.

Figure 10. Mutual authentication facilitated by DANE

VI. CONCLUSION

In this paper, we demonstrated how the DNS-based PKI
infrastructure could be a fitting solution to construct the IoT
PKI. DNS-based PKI enables the use of self-signed certifi-
cates, thus solving the cost issue and a federated set up with
the possibility of each entity choosing its own Root CA’s. It
is true that we still do not have a solution to extend the PKI
to the RF space (Fig. 6). It is a work in process. If we could
have end-to-end communication between the IoT ED and its
back elements by either compressing or fragmenting the X.509
digital certificate, then it could solve several operational issues
in IoT key management.

REFERENCES

[1] P. Mockapetris. “”Domain names - concepts and fa-
cilities”, STD 13, RFC 1034”. In: IETF Legacy RFC
(November 1987). https : / / www. rfc - editor. org / info /
rfc1034.

[2] P. Mockapetris. “”Domain names - implementation and
specification”, STD 13, RFC 1035”. In: IETF Legacy
RFC (November 1987). https://www.rfc-editor.org/info/
rfc1035.

[3] Katie B. et al. Considerations for Managing Internet
of Things (IoT) Cybersecurity and Privacy Risks. Tech.
rep. NIST, 2019.

[4] Simon Josefsson. Storing Certificates in the Domain
Name System (DNS). RFC 4398. Mar. 2006.

[5] X.509: Information technology - Open Systems Inter-
connection - The Directory: Public-key and attribute
certificate frameworks. 2008.

[6] Paul A. Vixie et al. Dynamic Updates in the Domain
Name System (DNS UPDATE). RFC 2136. Apr. 1997.

[7] Scott Rose et al. Resource Records for the DNS Security
Extensions. RFC 4034. Mar. 2005.

[8] P. Hoffman and J. Schlyter. “”The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA”, RFC 6698”. In: IETF
PROPOSED STANDARD (August 2012). https://www.
rfc-editor.org/info/rfc6698.

[9] Yaron Sheffer and Daniel Migault. TLS Server Identity
Pinning with Tickets. RFC 8672. Oct. 2019.

[10] Ben Laurie, Adam Langley, and Emilia Kasper. Certifi-
cate Transparency. RFC 6962. June 2013.

[11] Phillip Hallam-Baker and Rob Stradling. DNS Certifi-
cation Authority Authorization (CAA) Resource Record.
RFC 6844. Jan. 2013.

[12] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Ter-
minology for Constrained-Node Networks. RFC 7228.
May 2014.

[13] LoRaWAN® Specification v1.1.
[14] LoRaWAN Backend specs. https : / / lora - alliance . org /

sites /default /files /2018- 04/ lorawantm specification -
v1.1.pdf.

[15] IoTRoam-QuickStart. https://github.com/AFNIC/IoTRoam-
Tutorial/blob/master/QuickStart.md.

[16] Charter for the IETF DANCE WG. https://datatracker.
ietf.org/wg/dance/about//. 2022.

[17] Viktor Dukhovni and Wes Hardaker. The DNS-Based
Authentication of Named Entities (DANE) Protocol:
Updates and Operational Guidance. RFC 7671. Oct.
2015.

[18] Huque S., Dukhovni V., and Wilson A. TLS Extension
for DANE Client Identity, draft-huque-tls-dane-clientid-
06. Tech. rep. IETF, 2022.

[19] Huque S., Dukhovni V., and Wilson A. TLS Client
Authentication via DANE TLSA records, draft-huque-
dane-client-cert-08. Tech. rep. IETF, 2022.

