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Abstract—The development of vehicular technologies and in-
frastructures leads to developments in mobility handling for
wireless communications. Improving connectivity establishment
and reliability became an issue, especially for vehicles that may
move out of antenna coverage during connection establishment.
This paper focuses on improving LoRaWAN connectivity for
roaming devices by combining a machine learning predictor and
exploiting DNS prefetching to gather information necessary for
connection establishment before the device comes under coverage,
thus reducing the overall latency for connection establishment.
Extensive studies on various parameters such as antenna dispo-
sition or cache size.
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I. INTRODUCTION

The evolution of vehicular network generations led to new
challenges in the different communication models such as
V2V, V2I, V2P and V2X, where the connected vehicles can
provide services like data caching or tasks offloading for
other vehicles and also for users’ devices. Besides, the high
mobility of vehicles is an essential issue because it is related
directly to the communication channel where the stability of
the connection enhances the quality of service, particularly
latency and delay.

From a user’s point of view, access must be provided
as smoothly as possible, without additional cost, to develop
the technology’s adoption. Furthermore, in roaming scenarios,
serving all users as soon as possible would decrease the
impact from other networks on their own gateways. From an
operator’s point of view, an increase in latency might incur
congestion or gateway overload, which would decrease the
Quality of Service for IoT solutions. Thus, reducing the impact
of DNS requests when a device is joining becomes a key
connectivity concern. It is particularly challenging in mobile
environments.

Also, the issue behind storing and sharing data, or where to
locate data caches, how long to keep DNS information cached
and when to access it as an operator, is crucial to improve the
network for backend mechanisms. Prefetching information is
a common strategy to reduce network latency. Web browsers
use such techniques to obtain IP addresses for domains within

a web page, predicting that the user may click on a link, thus
sparing the requests when a user clicks by performing the
request beforehand.

Our proposal relies on a smart edge caching system that
can pre-provision information based on device movement. A
good example of underlying system to handle this data is DNS
prefetching. The DNS is a crucial component on the Internet
that fits the criteria for the data we wish to study. It might be
used as a distributed database, and it could incur additional
latency and hinder device connectivity when the system is too
slow to answer.

This paper proposes and analyzes different data querying
approach for mobile devices in an urban scenario through the
example of DNS prefetching. We evaluate their impacts on
both the user and operator’s quality of service. We assume
LoRaWAN connectivity. In a LoRaWAN scenario, DNS is
involved in the roaming procedure. We assume that we can
exploit DNS prefetching to query DNS servers based on device
mobility to resolve device-specific information between the
gateway and a DNS server. The prefetching can be as simple
as requesting that nearby gateways prefetch the information
(our algorithm 2 below) but could also rely on recent mobility
models based on Machine Learning (ML) predictions (our al-
gorithm 3). This paper studies the consequences of prefetching
information on antennas with regards to device mobility. In
particular, we check if the information is prefetched adequately
with respect to the actual vehicle location by observing the
DNS cache hit rate and the number of DNS requests necessary
to run the system (both prefetching DNS requests and on-the-
fly DNS requests). We also study antenna cache occupation,
cache hit-rate, DNS requests counts based on various parame-
ters such as antenna deployment, vehicular density and cache
size.

The presented use case focuses on provisioning DNS con-
nectivity data necessary for the join exchange in a LoORaWAN
connection establishment procedure, but this method applies
to other data querying mechanisms. It is even more general
since the strategies we propose to provision information in
antennas for vehicular networks may be used for many other
user data.

In the next part, we review the related works. Section III



presents our use case and expectations with this work. Section
IV presents our algorithms (subsection IV-A) and our detailed
scenarios (subsection IV-B). Then our results are detailed and
discussed in Section V. Finally, our conclusions are summed
up in Section VL.

II. RELATED WORKS

A. Improving communications using predictors in Vehicular
Networks

In this part, we present existing works that resolve the
communication failure problem caused by mobility in ve-
hicular networks. Some of these solutions exploit machine
learning techniques to predict device movement and improve
communication efficiency.

Crisostomo et al. [1] proposed a local route repair when
the connected nodes in the network predict that the itinerary
to the destination will break; they trigger the repair process.
All nodes are equipped with an embedded GPS; besides,
all packets contain node positions and other information.
The limitations of the proposed approach are high resource
utilization and the cost of using GPS.

Similarly, Goff [2] et al. proposed route maintenance that
allows for creating a new alternative route before the break
of the current communication link. The route is considered a
broken route when the received signal power is close to the
lowest detectable power; at this moment, a warning message
is sent to the source node about the risk of a link break, Then
the source node starts the process of finding a new route to
reach the destination. The main limitation of this solution is
when the source node does not receive the warning, which
leads to a link failure during the communication.

In [3] authors proposed a protocol called PrAODV where a
comparison is made between a threshold value and the signal
power of the received packets; when the received signal is
less than the threshold value, a ping message is sent from the
current node to all its neighbors that must respond with a pong
message, then the source node starts a route rediscovery. The
main problem of this solution is the routing cost.

Similarly, in [4], authors proposed a route maintenance
mechanism called PPAODV that enhances the QoS by pre-
dicting the risk of communication link failure. They used the
Lagrange interpolation to predict if the current node will be
in a dangerous zone in the next movement. Besides, when the
next position is in a dangerous zone, a route repair process is
triggered to find a new route to reach the destination, which
consequently prevents the network from link break.

Vinod et al. [5] proposed a mechanism of link life predic-
tion that creates an alternative link before it breaks. Vehicle
mobility on a highway is used as a scenario to validate the
results; besides, they used the microscopic or macroscopic
(traffic flow, traffic density) approach to generate the vehicles’
movements. The proposed algorithm uses vehicles’ velocity
and location to predict the route break.

Shelly et al. [6] proposed a statistic method for link lifetime
in Vanet networks using an analytical model. They studied the

impact of vehicle density, vehicle mobility, and the transmis-
sion range and analyzed the statistics of the communication
link. Besides, they studied a case of two vehicles (A) and (B),
where V4, Vg and V, are velocities of vehicle A, vehicle B
and the relative velocities of pair of vehicles respectively.

Work in [7] proposed a link duration prediction via Ad-
aBoost algorithm [8]. The proposed steps consist of aggre-
gating the existing link metrics to generate many predictors;
each predictor predicts if the link duration is under or over
a threshold with high accuracy using the link metrics. In the
next step, the algorithm determines the duration of the link
using all the knowledge collected from these predictors.

Wang et al. [9] proposed a prediction model called extended
link duration prediction (ELDP), which allows the vehicle to
estimate the link duration with the other vehicles. Simulations
in a city and highway show that the speed of vehicles has an
impact on the link duration prediction in Vanet networks. In
this work, a normal distribution needs to be used for vehicle
speed.

Das et al. [10] proposed a network formation game called
NGOMA algorithm for MAC-level re-transmission. It selects
one node from the intermediate node, and in the case of a link
failure, the formation game is used to select the relay node to
re-transmit a packet from the source node to the destination
node. The proposed algorithm reduces the delay and enhances
the packet delivery ratio.

Similarly, Bhoi et al. [11] used a data forwarding technique
to predict the link failure where a link existence diagram
(LED) is generated to know the existing vehicles’ links. The
proposed techniques prove their efficiency in terms of end-to-
end delay. Nevertheless, the GPS cannot detect obstacles and
requires vast resources.

Authors in [12] proposed a route prediction in Vanet net-
works to resolve the problem of communication link failure;
they proposed to use machine learning algorithms for predic-
tion and then studied the efficiency of the proposed solution.
Simulation results proved the efficiency of machine learning
in route prediction compared to real vehicle mobility.

Each proposed solution improved the QoS in vehicular
networks, especially solving the problem behind link failure
during communications. Nevertheless, it is difficult to prove
the efficiency of these solutions in dense networks with a
vast number of vehicles. In addition, the impact of different
obstacles is not studied in these works.

Some of these solutions exploit machine learning capabili-
ties to predict device movements. Using artificial intelligence
to support and predict device mobility can improve link quality
and is more suitable for large-scale vehicular networks.

B. DNS performance, caching and prefetching

DNS prefetching relies on a prediction mechanism; the user
could click on the link, so its browser performs the DNS query
beforehand for all domains on a web page. This simple predic-
tion mechanism can be transposed to any circumstances. [13]
analyzed DNS traffic with the increase of IPv6 technologies
in web hosting and put it in perspective with network traffic



increase in Japan and offered a prefetching-based solution to
increase cache hit rate and reduce response times on web
browsers. [14] proposes to study DNS queries in the context
of web navigation (DNS over UDP requests) by studying
when DNS queries are performed and when the information
is needed. Their conclusion regarding prefetching is that no
supplementary DNS cost applies thanks to prefetching. A good
tutorial on prefetching and its consequences is provided by the
Chromium project [15].

Fetching data using DNS comes with a short delay. [16]
studied DNS responses with overall results outlining a 200ms
response for 70% of their queries, and 90% of queries are
realized within 1s. More recent analyses, such as [17] or
[18] outline better results by combining anycast technologies
and Content Delivery Networks for DNS. [17] studies re-
sponses from top resolvers which answer 90% of their requests
within 100ms. Moreover, [18] provides additional information
regarding DNS over TLS (DoT) resolution in which they
outline failure rates with responses between 130ms and 230ms
from top resolvers. Overall, the time inflation from additional
security can be outlined around these values.

DNS over HTTPS (DoH) would add another supplementary
cost up to 150ms as outlined by [17] measurements on
public resolvers. Adding an integrity check with DNSSEC
would increase the requests even further. Overall, sending two
complete DNS requests completed with integrity check and
secured with DoH would cumulate up to 1.1s of queries done
within the first exchange between the ED and the RG. Our
problem is as such: "Would it be possible to reduce that delay
in a mobility context to reduce the impact from DNS querying
on channel establishment?"

This is the reason why exploiting DNS to prefetch infor-
mation is practical, as the information is queried either way;
doing it beforehand, if possible, reduces the overall latency.
Prediction algorithms help us determine where to provide the
DNS information. This paper aims to analyze how we could
reduce the overhead of DNS querying in mobility solutions
for vehicular applications by studying various scenarios.

III. MOTIVATION

This paper proposes DNS prefetching approaches to sup-
port LoRaWAN roaming connectivity through independent
antennas. Having independent antennas requires a new join
procedure each time a device changes its antenna, and the
join uses DNS queries. In other words, to gather user data
and provide network coverage in these scenarios, backend
interconnection is necessary, and DNS serves as a facilitator
in this handshake between servers, providing both discovery
and security in the system.

Our previous paper [19] presented an approach to reduce the
delay added by on-the-fly DNS queries necessary for device
communication. We presented three approaches to handling
DNS requests for vehicles. The first one is a classic on-
the-fly DNS approach that serves as a reference: a device
arriving under the coverage of a new antenna starts a join
process, which requires DNS requests which are done at this

time according to the traditional way. The second one uses
proximity between antennas to decide which information to
prefetch in advance (thus not on-the-fly): the DNS information
the device will request is prefetched by the back end on the
antennas neighboring the one covering the device before it
arrives under their coverage. If a device is under the coverage
of antenna A, the information is prefetched on all the antennas
around antenna A so that when the device moves, it can find
the information ready on its next antenna since its chance
to arrive under the coverage of a neighboring antenna is
high. This second approach is the state-of-the-art approach.
The third approach is our proposal to exploit vehicular traffic
prediction to forecast vehicle movement and prefetch the
information accordingly onto the antennas: the information is
prefetched where we expect the device to be in the near future,
instead of duplicating it in every neighboring antenna.

We proved in [19] that DNS prefetching is an efficient tool
to serve our proposal to reduce the delay added by on-the-fly
DNS queries. Prefetching the information on nearby antennas,
like in the second approach, can completely prevent DNS
queries by performing them in advance around the closest
antennas, but at a cost; more antennas realize the prefetching
operation than the third approach, especially in a highly
mobile environment. By exploiting recent ML capabilities for
traffic prediction, we could provide a solution that heats the
cache for 86% of requests, and that leads to a cache hit for
97% of them, on-the-fly DNS queries remaining necessary
because of prediction failures for only 3% of queries. Overall,
the ML system outperforms its nearby-activation counterpart
in terms of antenna solicitation since only the most likely
future gateways are provisioned: the second approach activates
around 27% more gateways than the third.

Our previous study presented a preliminary performance
study of a system with three possible DNS querying algo-
rithms. The present paper aims to study the consequences of
changing system parameters more extensively, such as antenna
topology, vehicular density and adding a limit to the cache’s
size.

Adding these considerations to our study’s scope would help
us understand how the cache acts when extensively solicited.
We propose another way to study antenna overload, sharper
and with a better fit to the reality, while still considering a 5-
minutes caching duration. We study cache congestion against
the number of vehicles within the perimeter, considering a
5000 entry limit for the system while also increasing the
number of vehicles within the vicinity of the antennas.

IV. PROPOSED APPROACH AND ANALYSIS METHODOLOGY

A. Algorithm

LoRaWAN allows for two roaming techniques, passive
roaming and handover roaming. Handover Roaming was in-
troduced in LoRaWAN 1.1 specifications [20] and allows for
roaming in similarly to cellular handover. Passive Romaing is
older in LoRaWAN and has existed since LoraWAN 1.0.X.
Passive roaming is the most developed roaming specification.



Passive roaming guidelines are detailed in [21], a document
that will detail other roaming approaches in later versions.

We focus our study on the LoRaWAN passive roaming:
it is the most developed, its specifications are detailed, and
the solution is implemented in the state-of-the-art LoORaWAN
implementation Chirpstack [22]. During passive roaming, a
join procedure is triggered, introducing two DNS queries for
channel establishment between the gateway and the backend
infrastructure. The usual activation flow detailed on Figure 1
for roaming device consists in :

o an exchange between the End-Device and the serving

Network Server associated with a nearby gateway

¢ a DNS query to identify the Join Server associated with
the End-Device
a DNS query to identify the home Network Server
« an exchange between Join Server and serving Network
Server
a response from serving Network Server to the device

ED RG NS sNS DNS Js
’F) ()

Get IP address of the IS

IP address of the JS
Gt sNS dentifier

NetlD of sNS.

Packet uplink

Packet downlink

Figure 1: Usual LoRaWAN devices activation message flow

The idea of our method is to allow prefetching of the DNS
information before needing it to save time during the activation
procedure (cf. figure 2). The consequences of DNS prefetching
on message flow are described in Figure 2; the information
necessary to support the devices’ connectivity is recovered
before the device’s Join Request; thus, the time corresponding
to the various queries is saved from the first transmission and
realized beforehand.

The activation flow (Figure 1) using prefetching becomes
as described in Figure 2:

o a Prefetching DNS query to identify the Join Server

associated with the End-Device
o a Prefetching DNS query to identify the home Network
Server

o an exchange between the End-Device and the serving
Network Server associated with a nearby gateway

« an exchange between Join Server and serving Network
Server

o a response from serving Network Server to the device

The proposed algorithm, labeled as algorithm (3) from now,
consists of periodically predicting a vehicle’s future position
to prefetch the DNS information necessary for the next in-
roaming join if its covering antenna or network server (NS)
changes. We assume each antenna change also corresponds to
a NS change, which means that antennas provide independent
network access, thus leading to a handover procedure. For-
mally, the proposed approach remains valid if NSs use several
antennas, as long as the antennas of the city are shared between
several NSs. Actually, the handover procedure is activated only
when the device changes of NS.

We propose to use a Long Short-Term Memory (LSTM)
algorithm to predict vehicle mobility inside the city [23].
Note that other prediction algorithms could also be tested.
The mobility dataset consists of tuples: vehicle ID, date,
time, and the position of vehicles (latitude, longitude). For
each new predicted location, we survey the closest antenna
and check if the device’s information is available on the
antenna’s cache or should be queried. Actually, depending on
the vehicle movements, DNS configuration (number of entries
in cache, TTL, etc.) or antenna placement, it may come under
an antenna’s coverage where it has already been before.

Also, since the state-of-the-art solutions of prefetching are
variants of what we call "nearby prefetching", we compare
our approach to another reference algorithm: with the "nearby
prefetching" algorithm, labeled (2) from now, the information
to be prefetched is provisioned on all the neighbouring an-
tennas around the current covering antenna. Of course, for
each location, we check if the device’s information is already
available on the antenna’s cache (if the device has already been
there before) or should be queried before prefetching it. With
this nearby prefetching algorithm, a moving vehicle is sure to
find its information prefetched when it moves under the next
antenna.
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Figure 2: LoRaWAN devices activation message flow with
our DNS prefetching mechanism



The main difference between the LSTM-based algorithm
(hereafter called machine learning algorithm, or ML algo-
rithm) and the nearby prefetching one is that the information is
prefetched on all the neighbouring antennas in the case of the
nearby one while it is prefetched only on the expected (pre-
dicted) next antenna in the ML one. At last, both algorithms
are compared with the standard solution, labeled (1), where no
prefetching is done at all: each time the device moves under
the next antenna, it needs to query the DNS twice as usual. Of
course, at the beginning of a vehicle trajectory, no prefetching
can be done ; thus, the first location of the device is put on
the side as "First DNS Query" and not taken into account in
the comparisons of the algorithms.

B. Scenario, parameters and performance criteria

To validate our algorithm, we test it on an actual vehicle
mobility dataset [24] in Rome city, Italy. The LSTM model
is trained using the dataset. The data represents the real-time
vehicle mobility for one month and traces the movements of
6992 devices within the Rome metropolis. Each vehicle is tied
to 10 successive locations. Figure 3 shows part of the studied
traces traced as a function of latitude and longitude.

Movement traces within Roma
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Figure 3: Vehicle mobility around Rome

We change several parameters to measure their impact on
the algorithm performance: the antenna placement, the DNS
cache size and the vehicle density.

There are different possible ways to vary antenna disposi-
tions around the city. We consider regular and random antenna
placements. For the regular antenna placement, we choose
square (a) and hexagonal (b) topologies. For random antenna
placement (c), we tried to mimic the real-life configuration
where the radio resource is concentrated near the user. To
this goal, the random antenna placement is realized by taking
each trajectory independently, then placing an antenna with

a 10% probability along this trajectory (thus obtaining 520
antennas, along the same values as regular placements). Once
the decision to place an antenna is made by the random roll,
the antenna is placed in a random position within a 3km disk
around one of the vehicle’s positions; thus obtaining a random
antenna disposition with better coverage along major streets
and highways within the city and its vicinity. We consider
variable antenna coverage distance for random placement
based on the number of neighbors it possesses. If the local
antenna density is high, the LoRa cell size is reduced to take
it into account, and the number of neighbors considered is thus
reduced.

Considering proximity-based prefetching, we defined prox-
imity for regular cases based on their neighbors in the
placement pattern; that makes theoretically 6 neighbors in
the hexagonal placement and 8 in the square placement. In
practice, the border limit reduces this neighbor value to 5.66
for hexagonal placement and 7.17 for square placement. For
the random placement, proximity is based on the distance
between antennas. We consider various cell size based on
antenna density :

e We decide on a 7-km wide cell size as a default value and
count the number of neighbors in the random placement
case.

o If the number of neighbors is more than the theoretical
number for the square pattern (8 or more), coverage
swaps to a mildly dense area and cell size is reduced
to 4-km wide coverage. In this second case, we count
the number of neighbors again.

o If this new number of neighbors is over the theoretical
number for the square pattern again, coverage swaps to
a highly dense area and cell size is reduced to a 1-km
wide coverage. This last case is final, we count this final
number of neighbors for antennas in highly dense areas.

Using this proximity determination algorithm, we end up
with 5.17 neighbors per antenna average instead of the 55.86
neighbors per antenna average obtained considering only 7-
km wide cells. This new 5.17 value observed is closer to the
number for other scenarios than the 55.86 value obtained with
fixed-size cells.

DNS cache congestion is not usually studied as it is out of
the scope of classical DNS traffic issues, but our system caches
a lot of DNS information, thus it is a subject of interest. We
assume that each independent antenna will provide roaming
access to devices within its reach. As described in figure 1,
this means that the antenna will request the device’s key from
its home network (HN) and establish its connection to the
ED thanks to them. We set the cache limit to 2500, which
corresponds to a real cache size of 5000, considering that
the activation flow from 1 processes two DNS requests. 5000
entries is close to the usual cache limit in DNS caches [25].
This allows us to study the consequences from adding a limit
to the DNS cache on network traffic. Once the cache is full,
the software would pop from the cache the oldest entry and
put in a new one. We set a Time-To-Live (TTL) for our DNS



entries to 300 seconds; that means the DNS entries are kept
in the DNS cache for a maximum time of 300 seconds. Two
cases are studied : no-cache limit (X) and 2500-entries cache
limit (L).

The vehicular dataset we use is traces from a sample set of
vehicles in Rome, corresponding to 6992 vehicles. To simulate
a more realistic traffic, we extrapolate it semi-artificially by
duplicating 1000 times the trajectories at different times ran-
domly chosen in the day. First, we duplicated 1000 times each
sampled trajectory in the hour following it. This allows us to
keep peak and off-peak hours. Also, to measure the sensitivity
of the performance study to the traffic profile, we duplicated
each sampled trajectory throughout the day. Each time a
trajectory is duplicated, either for duplications in the same
hour (A) or in the day (B), the corresponding duplications are
uniformly placed either in the hour or in the day. Note that
the most realistic traffic corresponds to the case where the
duplications are done in the hour since the vehicular traffic is
bursty with peak hours and off-peak hours, but the duplication
in the day is only here for sensitivity analysis purposes. Thus,
we moved to increase traffic density by duplicating the vehicle
trajectories at different times along their paths. Using this
method, we can consider multiple instances of vehicles along
a given trajectory without generating paths from simulation
software. Our given paths are known and can inform us about
how the overall system operates when handling an increasing
number of vehicles. Finally, this way, we simulate 6992000
vehicles.

Taking into account all the possible parameter combinations
leads to 36 simulation combinations. We use these simulation
results to try and define possible ways to improve the overall
system for multi-tenant IoT deployments and try to point out
essential backend considerations when working with these sys-
tems at scale. Finally, the simulation parameter combinations,
summed up in Figure 4, are :

« Firstly, we consider the possible prefetching algorithms
(No Prefetching, Proximity-based Prefetching, Machine-
Learning-based Prefetching)

« Secondly, we consider possible ways to densify the traffic
based on duplicating the trajectory within an hour or
within the day.

o Thirdly, we take into account the possible antenna dis-
positions described above: Square, Hexagons or Random
dispositions

o Finally, we add the cache limit and study the unlimited
cache limit scenario compared to the usual size for DNS
caches

Our criteria of interest are the number of uncached DNS
requests performed by the whole system, with or without con-
sidering the prefetching requests, the TTL for the information
in cache when the system is overloaded and the effective cache
size measured for each antenna (can be studied as an absolute
value or as a percentage of the defined maximal value of 2500).

Scénarios
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Trajectory duplication over N he limit
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Figure 4: Scenarios distribution and labeling for all cases

V. RESULTS & DISCUSSION

In this section, to highlight the impact of one parameter
against all the others, we aggregate all the values of the per-
formance criterion of interest obtained by simulations except
the parameter of interest. For instance, when estimating the
cumulative distribution of the time averages of the cache sizes
to look at the impact of the algorithm (cf. Figure 7), we mix
in the same set the time averages of all the simulations with
different antenna topologies and trajectory duplication modes,
but an infinite cache capacity and a given algorithm (either (1),
(2) or (3)). Another example is when comparing the number of
DNS requests for each algorithm, we aggregate the numbers
of on-the-fly DNS requests for all the scenarios (duplication
ways, topologies, etc.) but we fix the data querying algorithms
1, 2, 3), one curve for each algorithm, without considering
the other parameters’ values. (Figure 5).

Since our mechanisms aim at reducing the number of on-
the-fly DNS requests by a device, the primary performance
criterion of interest is this number. Thus, it corresponds to
DNS requests a device should query if the information is not
found in the cache, for instance, due to a mobility prediction
error. Figure 5 aggregates our results on the number of
"classic" on-the-fly DNS requests processed by the system, but
the algorithm ((1), (2) or (3)). This figure shows the cumulative
distribution of the number of on-the-fly DNS requests. We
observe a difference between the aggregated curves from our
scenarios. The 2nd and 3rd algorithm are identical for the top
15% of requests and the ML algorithm (2) outperforms the
standard solution (3) by around 3%. As expected, scenario
1 is the most efficient and outperforms the others in terms
of number of DNS requests. This difference, once considered
within the system, can be translated into time gains for device
communication. Generally speaking, the smallest number of
DNS requests is for the nearby algorithm, the highest one for
the algorithm without prefetching. The ML-based algorithm
is in between. It saves a lot of DNS requests but still needs
some because of prediction failures.

Looking in more detail, it appears there are exceptions.
Figure 6 provides the average number of usual DNS requests
per device for each (non aggregated) scenario, following
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Figure 5: Number of DNS Requests for all cases grouped by
prefetching scenario

nomenclature summarized Figure 4. For all unlimited sce-
narios, we observe that prefetching scenarios outperform the
no-prefetching ones. In contrast, considering a limit to the
DNS cache, proximity-based prefetching creates an explosion
in the number of DNS requests in the case of regular topology
compared to the two other algorithms that appear close to each
other.

Considering the usual limit to the cache size creates over-
loads within the system when prefetching comes within the
scope, and, in that case, the information expires quickly
(Figure 10). With regular antenna placement (cases a and
b), this prefetching overloads the cache in a significant way
and degrades the system’s performance. This effect is less
important when the antennas are located where the demand
is actually (i.e. pseudo-random topology). For pseudo-random
disposition, which is the most realistic of our cases:

o Without cache limitation, Machine Learning prefetch-
ing outperforms the no-prefetching scenario by 30%,
and proximity-based prefetching outperforms the no-
prefetching scenario by 33% independently of antenna
disposition and traffic density.

o Considering cache limitation, prefetching gains intro-
duced by Machine Learning over the standard solution is
11.7%, and prefetching gains from proximity are between
19.5% and 12.7%.

Overall, this comparison shows that for most cases, and
especially the most realistic ones, our proposition to exploit
machine learning capabilities outperforms the other scenarios
and will lead to time gains for devices. Our machine-learning
solution outperforms the no-prefetching scenario by adding
this prefetching that provides the information beforehand and
allows for time gains. Also, it outperforms the proximity
prefetching case by mitigating the losses from traffic densi-
fication and preventing system overload. At last, it provides
close results in scenarios where it loses compared to proximity.

Figure 7 describes the cumulative distribution of the average
effective cache sizes for all scenarios, separated between our
three querying algorithms: No Prefetching, Proximity-based
Prefetching and ML-based Prefetching. The y-axis represents
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Figure 6: Number of DNS Requests per device for all cases
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Aggregated scenarios

the cumulative distribution, and the x-axis is the cache size.
We observe that the overall load required for all antennas
without prefetching is the lowest, which means the cumulative
distribution converges quickly to a lower value than in the
other two cases. Without considering prefetching, which is the
way the system in place works, the load seems manageable
without significant issues with the DNS cache size. Proximity-
based prefetching comes with a higher cost in terms of cache
solicitation; the number of DNS entries in the cache is higher,
with a slower progression and reaching a higher point up to
more than five times the maximum value observed in the
scenario without introducing prefetching. Machine Learning
allowed us to mitigate this overcost from prefetching within
some margin. Exploiting Machine Learning techniques leads
to better results in terms of effective cache load than the
Proximity-based scenario. These results lead us to think that
Machine-Learning-based prefetching is efficient compared to
Proximity-based prefetching. It would provide an interesting
middle ground compared to a costly prefetching mechanism
and classic DNS scenarios.

Figure 8 aggregates the results to illustrate the variation be-
tween regular antenna placements and pseudo-random antenna
placement, and between Machine-Learning Based-Prefetching
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and Proximity-based Prefetching. For readability, we grouped
our two regular patterns under a single curve, but both curves
provide quasi-identical results. We observe with this scenario
that antenna load is better distributed using machine learning
than the usual proximity-based prefetching for both regular
and pseudo-random placement.

With regular antenna disposition, we observe 38% of unso-
licited antenna for proximity-based prefetching with progres-
sive growth in load for the 62 remaining percent and over-
load in around 5% of cases. Machine Learning outperforms
proximity-based prefetching with all antenna solicited between
2 and 10% less.

Pseudo-random disposition leads to a better load distribution
with less antenna unsolicited (10 to 18%) and less antenna
overloaded (2%). Once again, Machine Learning outperforms
proximity-based prefetching with similar difference between
both solutions.

Regardless of antenna disposition, we can say that ML-
based prefetching reduces the system load compared to
proximity-based prefetching by lessening the load on both
low-charge antenna and the highly solicited ones.
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Figure 9: Mean and 9th decile values for antenna effective
cache size - Scenarios aggregated on traffic densification

Figure 9 provides a comparison between cumulative dis-
tributions of antenna loads in terms of cache sizes for our
duplication scenarios, aggregated for all results. It presents
four curves: two compared mean values for antenna load
(cache size) and two compared the 9th decile value, which
gives an idea of the expected load considering a congested
system. Regardless of the vehicular density, our machine
learning proposal outperforms the proximity scenario. On the
mean values curve, the daily distribution leads to less load
than the hourly distribution. This result is more important on
the 9th decile values as our dataset can be described as a
heavy-tailed distribution.

1st decile value of time in cache between scenarios
in dataset A considering a limited cache size
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Figure 10: 1st decile values for DNS cache Time to Live in
seconds for all scenarios - Dense traffic (A)

Figure 10 presents the 1st decile values for the TTL in our
DNS caches for the higher density traffic (case A, duplicating
trajectories over the hours). We observe that the overload for
antennas, introduced by prefetching, leads to lowering the
TTL for device identifiers within our DNS caches. This is
expected since the DNS information in the cache is inserted
in a pipe: the newest information replaces the oldest one when
the cache is full. The first observation we can do is that for all
antennas disposition, no-prefetching means no overload, and
we observe a 300s TTL value. Then, introducing proximity-
based prefetching degrades the system and can lower the TTL
to the smallest values (86s in case a, 146s in case b and 282s in
case ¢) in the DNS cache. Our ML proposal compensates for
the loss from introducing additional information in the DNS
cache by localizing the information efficiently. This efficient
information localization leads to less overload on the antennas
around the device by selecting the specific antenna that will
need the information instead of provisioning the information
on all the antennas around. The actual values observed for the
1st decile of data come from 86s to 295s in case a, from 146s
to 295 in case b and from 282s to the maximal 300s value in
case c.

As described at the beginning of the paper, reducing on-the-
fly DNS queries leads to time savings. DNS query time is well



documented ( [13] [14] [16] [17] [18]) and its usual cumulative
introduced latency amounts between 60 ms and 250 ms; thus
the queries can lead up to a full second of latency saving.

In terms of cache hit rate, the most efficient solution is the
Machine Learning solution with 77% cache hit rate for all
requests. Traditional DNS comes next with a 73% cache hit
rate, and finally, proximity-based prefetching with 70%.

Proximity-based prefetching suffers a lot from cache limi-
tation as the performances drop from 84% cache hit rate in
unlimited cases to 56% with cache limit. As a comparison,
traditional DNS drops from 75% to 71% and ML from 82%
to 71%.

To summarize all our results, based on all these parameters,
we can say that depending on the needs, the three techniques
(traditional DNS 1, proximity-based prefetching (2) and Ma-
chine Learning (3)) are an efficient tool to assist with device
mobility.

If the issue is to reduce cache occupation, traditional DNS
is the solution, it requires less storage on the antenna at the
cost of more session establishment time???2 during handshakes.
The use of traditional DNS caching is already an efficient tool,
especially with low-mobility devices.

If the issue is to reduce handover time in the more cases
possible, proximity-based prefetching provides an efficient
solution. By providing a systematic mechanism to make sure
that the information will stick to device movement in all
unlimited cache situations, proximity-based prefetching shuts
down traditional DNS request times. This is nuanced when
considering a limit to cache size, especially with regular cells,
as shown in Figure 10, where proximity-based prefetching
suffers from the limited cache size. Increasing the cache
size from a 10-factor would solve almost all overload, but it
depends on the number of devices in the vicinity. The solution
works nonetheless in all less dense areas ; the issue with
cache overload only concerns the top 20% antenna as the
phenomenon completely disappears past this point.

Machine Learning provides a middle-ground between these
two solutions, outperforming the proximity-based prefetching
by around 10% in cache efficiency and almost suppressing the
impact from limited cache size, at the cost of a 3.5 factor in
overall DNS requests transmitted compared to the traditional
DNS solution and leading to successful cache hit rate in around
77%.

VI. CONCLUSION

DNS prefetching is an efficient tool to reduce the delay
added by on-the-fly DNS queries necessary for device com-
munication. It is a way to prepare the information for the
time when the vehicle will be under the umbrella of the right
antenna. Prefetching the information on nearby antennas, like
with algorithms 2 or 3, can completely prevent DNS queries by
performing them in advance. Our Machine Learning proposal
with algorithm (3) is an improvement compared to the nearby-
prefetching case 2, allowing for similiar or better performances
with a reduced cost.

Overall, the ML system would outperform its nearby-
activation counterpart in antenna solicitation since only the
most likely future gateways are provisioned: proximity-based
prefetching leads to 2.25 times more requests overall from an-
tennas than machine learning. The comparison keeps working
when we develop on each sub-scenario, and machine learning
outperforms prefetching for almost every criteria, including
requests TTL (for which we observe up to 3 times less time
in cache in algorithm 2 than 3).

The only criteria in which proximity-based prefetching
outperforms machine learning is the number of on-the-fly DNS
requests when cache size is high (unlimited case). This leads
us to discuss the pros and cons of overloading antennas and
reducing device time loss.

Studying traffic densification, with our two different pos-
sibilities for traffic densification, leads us to think that the
operation would work regardless of vehicular traffic and road
disposition.

This paper focused on DNS prefetching, but the proposal
can also be applied to any other environment for which
anticipated data querying is useful such as video caching.

Acknowledging that exploiting machine learning predictions
would be efficient and that pseudo-random distribution leads
to better load distribution between antennas, it would be inter-
esting to expand this work based on these two distributions.

Machine Learning algorithms can also be another parameter
to study. We singled out a deep learning algorithm as part
of this work, but various other traffic predictors exist and
studying the impact of ML-predictors’ performances on the
overall system load would be interesting.

Finally, localized cache mutualization is also a possible
point of interest for this work. We observe that most vehicles
move in localized areas; thus, some information could be sent
to exchange points mutualized for antennas in a given area
to build a tradeoff between request processing and memory
space.
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