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Abstract—LPWANSs are networks characterised by the scarcity
of their radio resources and their limited payload size. LoRaWAN
offers an open, easy-to-deploy and efficient solution to operate a
long-range network. To efficiently communicate using IPv6, the
Ipwan working group from the IETF developed a solution called
Static Context Header Compression (SCHC). It uses context
rules, which are linked to a given End Device, to compress the
IPv6 and UDP header. Since there may be a huge variety of End
Devices profile, it makes sense to store the rules remotely and
use a system to retrieve the profiles dynamically. In this paper
we propose a mechanism based on DNS to find the context rules
associated with an End Device and, allowing it to be downloaded
from an HTTP Server. We evaluate the corresponding delay
added to the communications using experimental measurements
from a real testbed.
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I. INTRODUCTION

Internet of Things (IoT) includes a wide range of technolo-
gies relying on a variety of standards and protocols. Each of
the IoT technologies is suited for different IoT use cases. One
of the main limitations of IoT technologies, when compared
to the Internet, is that most of IoT devices, as well as the
network, have constrained capabilities.

Low-Power Wide-Area Networks (LPWANSs) [1] is one such
IoT technology that aims to provide network connectivity
to IoT devices distributed over a wide area. Their distinct
characteristics such as their coverage capacity (ranging from
ten to fifteen kilometers), long battery life (with a lifespan
of more than ten years), low cost (the architecture reduce
expensive infrastructure requirements, and the use of license-
free or already owned licensed bands reduce network costs)
satisfies the requirements of a considerable IoT market [2].
Major LPWAN technologies include Long Range Wide Area
Network (LoRaWAN) [3], Narrow Band IoT (NB-IoT) [4],
LTE-MTC (Machine Type Communication, LTE-M) [5], Sig-
fox [6], Wi-SUN Alliance Field Area Network (FAN) [7].

Most LPWAN technologies use a star topology network.
Data sent from the End-Device (ED) is received by a Radio
Gateway (RG) which relays the data to a Network Server
(NS). The NS relays the data and additionnal information
(signal quality, channel, remaining lifetime, LoRa version,
device version) to the appropriate Application Server (AS).
Usually, the RG, the NS and the AS are either connected via
a direct IP link or connected to the Internet.

The communication bandwidth in the LPWAN, that is the
radio connectivity between the ED and the RG, is highly
constrained. Because of the scarcity of resources and duty
cycle constraints, data compression has become a necessity.

Static Context Header Compression (SCHC) [8] is a frame-
work that provides both compression and fragmentation func-
tionalities. It is being standardised by the lpwan [9] working
group at the IETF. The SCHC document is still in the draft
format and is in the final process to become a Request For
Comments (RFC). The SCHC draft and its related works [9] at
the IETF is also being followed by other standards developing
organizations such as IEEE 802.15, or the LoRa Alliance. It
is considered an efficient solution to connecting the LPWANSs
using IPv6, thus enabling end-to-end IP connectivity. With
the help of the SCHC framework, it is possible to compress
an IPv6 header from its original size of sixty bytes down
to two bytes, thus reducing bandwidth usage and increasing
communication efficiency.

In this paper, we propose a remote context querying mech-
anism to allow application providers and developers to easily
and quickly manage context data using DNS queries and
use SCHC’s functionalities on the server side. Even though
the proposed mechanism has not been tried earlier to our
knowledge, in § II we provide the motivation for this research
as well as related work involving SCHC. In § III, we explain
our methodology and our experimental testbed and finally in
§ IV, we analyze our results.

II. MOTIVATION AND RELATED WORKS

As proven by [10], SCHC provides "a unified protocol
stack independent of the underlying LPWAN technology".
This proves particularly useful when designing product with
multiple connectivity, allowing developers to communicate on
LPWANS using the IP protocol. With the evolution of the IoT
market, the only reliable and efficient solution to connect a
device will be using IPv6, but IPv6 packets are too heavy
to be sent on LPWANSs without adaptation. SCHC provides
such adaptation, but also saves a lot of development time from
technology specific adaptations. For example, [11] provides
specification for the transport of DLMS messages over LP-
WAN using SCHC, which saves time for their application
developers and protocol designers while fulfilling security
considerations.



In order to compress the data sent and received between
the ED, the NS and the AS, SCHC uses a predefined group of
rules called Context which is deployed on the ED and on the
NS or the AS. For our experiments, the Context is deployed
at the ED and the AS. This context may be specific for each
ED or common for a group of EDs. Fig. 1 is an example of
Context Rule as described in the SCHC draft [8].
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FL|FP|DI| Value | Match

| Comp Decomp|| Sent |

|
| [ | opera. | Action | | [bits]]|
B TSI, ottt + ++ +
| IPv6 Version |4 |1 |Bi|6 | ignore | not-sent | |
|IPv6 DiffServ |8 |1 |BifoO | equal | not-sent | |
|IPv6 Flow Label |20|1 |Bi|0 | equal | not-sent | |
| 1Pv6 Length |16|1 |Bi| | ignore | compute-* || |
| IPv6 Next Header|8 |1 |Bi|17 | equal | not-sent | |
|1Pv6 Hop Limit |8 |1 |Bi|255 | ignore | not-sent |l |
|1Pv6 DevPrefix |64|1 |Bi|FE80::/64| equal | not-sent |l |
| 1Pv6 DevIID |64]|1 |Bi] | ignore | DevIID |l |
|1Pvé AppPrefix |64|1 |Bi|FE80::/64| equal | not-sent |l |

|64]1 equal | not-sent | |

| IPv6 AppIID |Bif::1

Figure 1: Context rule example (Source [8])

For every Context, there could be single or multiple rules.
When sending data from the ED to the RG, the SCHC
Context rule enables compression by suppressing redundant,
superficial, predictable and/or most used data inside an IPv6
header and replacing them with a Rule Identifier chosen in a
given set of predefined rules. For instance, the ED’s IP address
may be added to the Context allowing to avoid transmitting
128 bits IP address data if all the packets sent by a sensor
have the same IP address. When using SCHC, either the RG,
the NS or the AS is supposed to realize SCHC operation
(compression, decompression, fragmentation, reassembly) for
all associated EDs. If the Context rules are hard-coded in the
ED, the NS or the AS, it will be challenging to modify later.
That is the reason why we propose that the ED, the NS or the
AS should retrieve the Context dynamically from a remote
server. Thus, the owner of the rules could easily modify them.
Only the Rule ID’s are stored either in the ED, the NS or the
AS.

Managing 15 rules stored on a single device is possible, but
the system would face trouble when up-scaling as each rule
is uniquely bound to its device. With around 10.000 devices
around a single radio gateway, and multiple radio gateway for
a network gateway, we suddenly end up with potentially a lot
of information to store. If we use, for example, Chirpstack
Gateway OS [12] which is designed to work on a Raspberry
Pi and embarks all the software necessary to operate a LoRa
Network, it would be costly to store the rules for all the devices
around the gateway

There are multiple options of storage for Context rules.
It could be done in a private server, stored in the cloud or
provided by a third party application. However we think that it
could be wise to use a standardized open, distributed and easy
to use mechanism to find the location of the server where the
Context Rules are stored. . Thus, we zeroed in on DNS [13]
[14] , which is the only optimized hierarchically distributed
database which could enable to identify the location of the

server where the Context Rules are stored in a feasible and
efficient manner on the Internet.

To our knowledge, there is only another work [15], which
tries to retrieve the Context from an Administration Manage-
ment Server (AMS) for roaming purposes in LoRaWAN. Our
opinion is that the AMS scenario is operationally possible
only when the operators have a contract between each other in
order to retrieve the location of the AMS. But the advantage
of LoRaWAN is that with an investment of less than 500 €,
one can set up a private LoRaWAN connection. Thus, there
could be thousands of private networks for three or four public
networks (where large operators cover a whole Country for
instance) in some geographical area. The only difference being
that private networks use a default network identifier, open to
everyone and allowed for private or research use. Though they
are private, these network are still connected to the internet and
may still be contacted from the outside. But to have contracts
between thousands of private/public network operators for
resolving the location of the AMS is not operationally feasible.
That is the reason we zeroed in on using the DNS for resolving
the location of the server that hosts the Context rules.

III. PROPOSED MECHANISM AND EXPERIMENT

Our experiment aims to test if SCHC-enabled communica-
tion is viable in a real use-case regardless of its theoretical
feasibility. Then, we want to test if SCHC remote rule-
management is possible and propose a DNS-based mecha-
nism to support SCHC remote rule management. We provide
measurements to study the consequences of a remote context
retrieval system on latency in LoRa networks (for server-side
services and for devices). Our experimental results also aim
to serve as references to enable further work on the subject.
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Figure 2: Measurement Platform’s Architecture

The proposed mechanism consists in delocalizing the SCHC
rules on a remote HTTP server and using DNS to retrieve
them. When the ED sends data, they are received by the
RG, then transferred to the NS and retrieved by the AS. To
decompress the data, the AS needs access to the rule. We use
the DNS to retrieve a hash of the rule (since it is not possible
to store the whole rule in the DNS for now) and possibly an
address of the HTTP server on which the corresponding rule
might be stored. We can safely assume for our experiment



that the rules can be uniquely linked to the tuple (DevEUI,
RulelD).

This tuple is constructed by extracting the DevEUI from
the LoRa frame and the RuleID using the first bits from the
LoRa payload compressed by SCHC. The AS is used to store
the rules corresponding to the device in its perimeter in a
rules cache for a set period of time. The rules in the AS
are indexed in a hash table. When the AS receives data, it
constructs the tuple (DevEUI, RulelD) as indicated above, then
uses the DNS to retrieve the hash of the corresponding rule
and search for this rule in its rules cache. If it is not found
because it is a new tuple (DevEUI, RuleID), a new rule must
be stored in the cache and the HTTP server where the rule
is stored is interrogated to get it. Then, the rule is inserted in
the cache. Note that even when a rule is present in the cache,
the DNS is systematically queried because the freshness of
the information must be checked to ensure that the rule has
not been modified since its last cache insertion. Finally, the
data can be decompressed. Once the data are decompressed,
a response may be sent back by the server depending on
the needs of the application. Fig. 2 presents the interactions
between the AS, the DNS and the HTTP server in the case
where a new rule is needed.

A. Measurement scenarios

Our study focuses on Application Server Response Time
and End Device Uplink Round Trip Time through different
scenarios. Scenario 1 and 2 serve as references to compare
with other scenarios. They provide the minimum communi-
cation time with and without SCHC decompression. Scenario
3 aims to study the mechanism presented in § III. Scenario
4 studies the case where most of the information is always
present in the cache. These four scenarios are described more
precisely below:
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Figure 3: Message Exchange Diagram (Scenario 1)

o Scenario 1: The first measurement is designed to be used
as an experimental reference for our platform. Data are
sent without compression from the ED over LoRa and
a response is sent back from the LoRa AS in order to
measure the RTT ¢1 — ¢0 (cf. Fig. 3). We also measure
the Application Server Response Time ¢1’ — t0’. No
decompression operation is performed on the data.

e Scenario 2: The second measurement adds the SCHC
mechanism for the communication over LoRaWAN. The
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Figure 4: Message Exchange Diagram (Scenario 2)

ED sends the data compressed using the SCHC Context
and the received data are decompressed using the same
Context rule that is stored in a file locally on the AS. We
measure t1 — t0 (cf. Fig. 4) We also measure the Appli-
cation Server Response Time ¢1’ — ¢t0’. The comparison
with results from Scenario 1 allows us to estimate the
decompression time.
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Figure 5: Message Exchange Diagram

e Scenario 3: The third measurement is the key scenario
of our study. It aims to add the mechanism presented
at the beginning of § IIl and illustrated by Fig. 2 to
provide the AS with the SCHC Context that is stored
in a remote server. In this measurement, instead of
using a locally stored Context rule for decompression,
the AS is asked to download the Context file from a
remote HTTP server with a request such as "HTTP GET
myschcrules.net/DevEUI/RuleID". We measure the total
Round Trip Time (RTT) ¢1 — t0, the Application Server
Response Time t1’ — t0’, the RTT of the DNS Query
t1” — t0” and the RTT of the HTTP Request t1"" — t0"”
(cf. Fig. 5)

e Scenario 4: In most cases, EDs will be static (e.g. Water
Meters) and well known by the AS so their context rules
will be always present in the AS cache of rules. In this
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Figure 6: Message Exchange Diagram (Scenario 4)

case, the DNS is still queried at least to check there has
been no change to the rule. This scenario 4 corresponds
to the case where there is no changes to the rule, the
rule has not been updated and it is still present in the AS
cache. Thus there is no need to query the HTTP server
and download the rule again. We measure the total RTT
t1 — t0, the Application Server Response Time t1’ — t0’
and the RTT of the DNS Query 1”7 — t0” (cf. Fig. 6).

To sum up, scenario 1 and 2 are used as experimental refer-
ences, scenario 3 will be the case for initial communications,
rules update and cache expiration whereas scenario 4 would
correspond to day-to-day queries for Device Context Status.

B. Experiment Testbed

As mentioned earlier, LORaWAN is a LPWAN technology.
It uses an open standard and is easy to deploy so we use it for
our experiments. ChirpStack [16] is an open-source solution to
easily build a ready-to-use LoRaWAN. It provides the software
components of our infrastructure for the RG, NS and the AS.

ChirpStack works with the RG to ensure that the data
received from the devices can be relayed to the AS. For our
experiment, we chose to connect directly to a MQTT broker
and subscribe to the message queue associated to our devices,
but MQTT can also be used to monitor the gateway or to
contact all the devices that are linked to a specific LoRa
Application using various topics. LoRa AS also offers a REST
API, a gRPC API and a web UI to offer multiple ways to
operate a LoRaWAN network.

We used PyCom FiPy development cards as LoRa-enabled
devices and we made them send SCHC compressed data based
on a Context over LoRa to a Multitech Conduit RG which
forwards the data to the ChirpStack Network Server. Then we
can retrieve the data using the ChirpStack Application Server
or subscribe to the MQTT broker hosted on the Network
Server to retrieve the data sent and decompress it based on
the same Context that was used for compression.

The SCHC implementation we used to decompress data is
OpenSCHC [17]. This implementation is developed by the
authors of the SCHC internet draft as a proof of concept. It
serves as the base reference for other SCHC implementations.

FiPy cards are Class A compliant devices as defined by the
LoRa Standard [3], hence they respect a strict emission/recep-
tion schedule. Our experimentation is realised respecting the
EU regulations on duty cycle, communicating in the EU 868
MHz frequency. All communications are done using Spreading
Factor (SF) 7 considering that, for our experiment, it is the one
we expect to include most constraints regarding latency. If our
system works without hindering RTT for SF7, it has no reason
to hinder the RTT for higher latency SF.

IV. RESULTS AND DISCUSSION

Fig. 7 illustrates the cumulative distribution functions of the
Application Server-side Response Time ¢1’ —¢0’ with or with-
out SCHC (cf. Fig. 3 and 4) to show the order of magnitude
of the sole decompression mechanism. We considered that a
locally stored context file is used for the decompression. The
curves show that integrating SCHC adds a few milliseconds
to the operations necessary to work on the data independently
to the possible delays added by the rule-querying mechanism.

Fig. 7 also shows the cumulative distribution functions of
the Server-side Response Time ¢1’ — t0" for all the studied
scenarios, thus including also context remote querying for the
non-local solutions(HTTP, DNS).
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Figure 7: Cumulative distribution function of the Application
Server Response Time t1’ — ¢t0’ (in %) against (logarithmic
scale) time in ms for all scenarios.

We observe that the order of magnitude of the Server
Response Time is for the worst case (HTTP-base mechanism)
around 0.6s

Note that the DNS response time in our case (between 5
ms and 15 ms) is faster than the usual DNS response time
due to DNS caching [18] from our local network’s DNS
resolver. We keep interrogating our resolver with data it has
already in its DNS cache so the DNS Response Time is cut
down. In a wide LoRa deployment, this caching will remain,
but considering the frequency with which the LoRa devices



are expected to communicate on the network, the cache will
probably be emptied from the necessary data.

In order to provide a more realistic model to study the
influence of adding DNS queries in an IoT system, we decided
to gather additional data on DNS response time. We used RIPE
Atlas [19] which is a system that allows us to perform internet
measurements through a set of probes available all over the
world. While most of the probes are in Europe, we realized
measurements asking for interrogations from all continents
to test the responses for a single DNS query from multiple
locations around the world. The measurements performed
using RIPE Atlas allows us to determine the DNS Response
Time in a more realistic case, and allows us to perform our
query when it is certain that the DNS cache is expired.
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Figure 8: Cumulative distribution function of the DNS
Response Time t1” — ¢t0” (in %) against time in ms for
Scenario 3 compared and from RIPE Atlas [19]
Measurements

Fig. 8 provides a comparison between DNS Response Time
for our DNS Queries and DNS Response Time obtained
through measurements from RIPE Atlas interrogations. Ac-
cording to this figure, DNS Response will be slower in a
real case than with our platform, but a time within 200ms
is still perfectly viable with regards to the Response Times
we measured for our platform.

Fig. 9 presents the measured Uplink Round Trip Time (From
ED to Application Server, then back to ED) ¢t1 — t0. We
observe that it is at least about 3.9s for 99% of the packets
transmitted through our platform for all the studied scenarios.
Considering the case of LoRa Class A devices [3], a downlink
frame from the gateway can only be sent during a given
time interval called "receive window" (cf. [3] and [20]). The
gateway implementation we are working with does not allow
a frame to be transmitted to the device unless it has been
en-queued before the gateway receives an uplink frame from
the device (cf. Fig. 5). The last receive window is opened two
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Figure 9: Cumulative distribution function of the Round Trip
Time t1 — t0 (in %) against time in ms for all scenarios (all
the curves are superposed)

seconds after the last uplink frame has been transmitted. It lasts
twice the transmission time which depends on the SF. In our
case, we use SF7 and our transmission time is around 100ms.
For the majority of our measurements, our total measured RTT
is around 4.2s, Fig. 10 illustrates how the gateway handles
the data transmission to the device, which packet type are
transmitted and which reception window is opened by the
device to receive the data. Note that the implementation we
use is ChirpStack, the OpenSource reference solution for LoRa
platform. We would expect the same behaviour for class B
devices whereas Class C would allow an immediate response
and a shorter RTT.
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Figure 10: LoRa Communication Timing

Should we consider ourselves in a generic case with another
gateway implementation, our goal would be to keep the Re-
sponse Time as short as possible in order to allow the response
to be transmitted to the device during one of these two
receive windows. Our proposed mechanism introduces around
a 650ms delay to Application Server Response Time leaving



only 350ms of data handling. Using a DNS-only solution (i.e.
the rule is already in cache as in Scenario 4) would also
shorten this time to a 50 ms Application Server Response Time
according to our platform. But Atlas measurements would
show that this time is rather around 200 ms as illustrated
by Fig. 8) which is still acceptable after introducing such a
dynamic mechanism and considering our 1s window.

Problems may arise considering upper-layer protocols such
as CoAP. This question is currently being asked at the IETF by
C. Gomez and J. Crowcroft in their draft RTO considerations
in LPWAN [20] for which the authors signal that "LoRaWAN
policies may lead to U-RTT up to 282 seconds in the worst-
case" (SF12). Working with SF7 measurements, we only
observe a 4.1s mean RTT when considering the listening
window used by the device to receive communication from
the gateway. Actually, according to the [21] CoAP message
transmission has a default ACK_TIMEOUT parameter which
is set to 2 seconds. In this case, the ACK_TIMEOUT has to
be adjusted carefully to respect end-to-end delays.

V. CONCLUSION

Using SCHC to send IPv6 packets over LPWAN is proven
to be an efficient way to take into consideration the scarcity
of radio resources. We deployed all the components of a
LoRaWAN infrastructure in order to build a SCHC-enabled
LoRa network. Because of the expected large number of
devices and the variety of possible things profiles, it seems
necessary to envisage a mechanism to dynamically retrieve
SCHC context rules.

DNS is a global and well-known system which is a basic
stepping stone when designing a dynamic system. Here we
proposed a remote mechanism using DNS to retrieve rules
signatures and allow a LoRaWAN infrastructure to react
quickly to new devices communications or updated rules and
eventually to retrieve the rules necessary to decompress data in
a LoRa frame. This mechanism adds a small delay because of
the RTT needed to query the DNS (and possibly a remote
server as fallback mechanism to download rules). But this
delay is acceptable considering the complete RTT of the LoRa
specifications. Upper layers’ timeout may have to be adjusted
to take into account the corresponding added delay.

For our study, we focused on storing SCHC rule hashes
using the DNS infrastructure. But hosting other device-specific
information in the DNS such as device version, functionalities,
status or expected battery lifetime is entirely possible. Provi-
sioning these information in the DNS would allow for quick
modification and easy propagation of the information to the
customers with garanteed interoperability with any system and
at a low cost.
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